Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint
dc.contributor.author | Saito, Priscila T. M. | |
dc.contributor.author | Nakamura, Rodrigo Y. M. | |
dc.contributor.author | Amorim, Willian P. | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Rezende, Pedro J. de | |
dc.contributor.author | Falcao, Alexandre X. | |
dc.contributor.institution | Univ Tecnol Fed Parana | |
dc.contributor.institution | Big Data Brazil | |
dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2018-11-26T16:16:12Z | |
dc.date.available | 2018-11-26T16:16:12Z | |
dc.date.issued | 2015-06-26 | |
dc.description.abstract | Nowadays, large datasets are common and demand faster and more effective pattern analysis techniques. However, methodologies to compare classifiers usually do not take into account the learning-time constraints required by applications. This work presents a methodology to compare classifiers with respect to their ability to learn from classification errors on a large learning set, within a given time limit. Faster techniques may acquire more training samples, but only when they are more effective will they achieve higher performance on unseen testing sets. We demonstrate this result using several techniques, multiple datasets, and typical learning-time limits required by applications. | en |
dc.description.affiliation | Univ Tecnol Fed Parana, Dept Comp, Cornelio Procopio, Brazil | |
dc.description.affiliation | Big Data Brazil, Sao Paulo, SP, Brazil | |
dc.description.affiliation | Univ Fed Mato Grosso do Sul, Inst Comp, Campo Grande, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Fundacao de Apoio ao Desenvolvimento do Ensino, Ciencia e Tecnologia do Estado de Mato Grosso do Sul (Fundect-MS) | |
dc.description.sponsorshipId | CNPq: 303182/2011-3 | |
dc.description.sponsorshipId | CNPq: 477692/2012-5 | |
dc.description.sponsorshipId | CNPq: 552559/2010-5 | |
dc.description.sponsorshipId | CNPq: 481556/2009-5 | |
dc.description.sponsorshipId | CNPq: 303673/2010-9 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 311140/2014-9 | |
dc.description.sponsorshipId | CAPES: 01-P-01965/2012 | |
dc.description.sponsorshipId | FAPESP: 2011/14058-5 | |
dc.description.sponsorshipId | FAPESP: 2012/18768-0 | |
dc.description.sponsorshipId | FAPESP: 2007/52015-0 | |
dc.description.sponsorshipId | FAPESP: 2013/20387-7 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.format.extent | 23 | |
dc.identifier | http://dx.doi.org/10.1371/journal.pone.0129947 | |
dc.identifier.citation | Plos One. San Francisco: Public Library Science, v. 10, n. 6, 23 p., 2015. | |
dc.identifier.doi | 10.1371/journal.pone.0129947 | |
dc.identifier.file | WOS000358147500046.pdf | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/11449/160665 | |
dc.identifier.wos | WOS:000358147500046 | |
dc.language.iso | eng | |
dc.publisher | Public Library Science | |
dc.relation.ispartof | Plos One | |
dc.relation.ispartofsjr | 1,164 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint | en |
dc.type | Artigo | |
dcterms.rightsHolder | Public Library Science | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000358147500046.PDF
- Tamanho:
- 2.12 MB
- Formato:
- Adobe Portable Document Format
- Descrição: