Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint

dc.contributor.authorSaito, Priscila T. M.
dc.contributor.authorNakamura, Rodrigo Y. M.
dc.contributor.authorAmorim, Willian P.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorRezende, Pedro J. de
dc.contributor.authorFalcao, Alexandre X.
dc.contributor.institutionUniv Tecnol Fed Parana
dc.contributor.institutionBig Data Brazil
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-26T16:16:12Z
dc.date.available2018-11-26T16:16:12Z
dc.date.issued2015-06-26
dc.description.abstractNowadays, large datasets are common and demand faster and more effective pattern analysis techniques. However, methodologies to compare classifiers usually do not take into account the learning-time constraints required by applications. This work presents a methodology to compare classifiers with respect to their ability to learn from classification errors on a large learning set, within a given time limit. Faster techniques may acquire more training samples, but only when they are more effective will they achieve higher performance on unseen testing sets. We demonstrate this result using several techniques, multiple datasets, and typical learning-time limits required by applications.en
dc.description.affiliationUniv Tecnol Fed Parana, Dept Comp, Cornelio Procopio, Brazil
dc.description.affiliationBig Data Brazil, Sao Paulo, SP, Brazil
dc.description.affiliationUniv Fed Mato Grosso do Sul, Inst Comp, Campo Grande, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundacao de Apoio ao Desenvolvimento do Ensino, Ciencia e Tecnologia do Estado de Mato Grosso do Sul (Fundect-MS)
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 477692/2012-5
dc.description.sponsorshipIdCNPq: 552559/2010-5
dc.description.sponsorshipIdCNPq: 481556/2009-5
dc.description.sponsorshipIdCNPq: 303673/2010-9
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 311140/2014-9
dc.description.sponsorshipIdCAPES: 01-P-01965/2012
dc.description.sponsorshipIdFAPESP: 2011/14058-5
dc.description.sponsorshipIdFAPESP: 2012/18768-0
dc.description.sponsorshipIdFAPESP: 2007/52015-0
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.format.extent23
dc.identifierhttp://dx.doi.org/10.1371/journal.pone.0129947
dc.identifier.citationPlos One. San Francisco: Public Library Science, v. 10, n. 6, 23 p., 2015.
dc.identifier.doi10.1371/journal.pone.0129947
dc.identifier.fileWOS000358147500046.pdf
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11449/160665
dc.identifier.wosWOS:000358147500046
dc.language.isoeng
dc.publisherPublic Library Science
dc.relation.ispartofPlos One
dc.relation.ispartofsjr1,164
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleChoosing the Most Effective Pattern Classification Model under Learning-Time Constrainten
dc.typeArtigo
dcterms.rightsHolderPublic Library Science
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000358147500046.PDF
Tamanho:
2.12 MB
Formato:
Adobe Portable Document Format
Descrição: