Synthesis of human bone morphogenetic protein-2 (Hbmp-2) in e. coli periplasmic space: its characterization and preclinical testing


Human BMP-2, a homodimeric protein that belongs to the TGF-β family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety of E. coli-derived hBMP-2 has been synthesized through refolding of cytoplasmic inclusion bodies. The present work reports the synthesis, purification, and characterization of periplasmic hBMP-2, obtained directly in its correctly folded and authentic form, i.e., without the initial methionine typical of the cytoplasmic product that can induce undesired immunoreactivity. A bacterial expression vector was constructed including the DsbA signal peptide and the cDNA of hBMP-2. The periplasmic fluid was extracted by osmotic shock and analyzed via SDS-PAGE, Western blotting, and reversed-phase high-performance liquid chromatography (RP-HPLC). The purification was carried out by heparin affinity chromatography, followed by high-performance size-exclusion chromatography (HPSEC). HPSEC was used for qualitative and quantitative analysis of the final product, which showed >95% purity. The classical in vitro bioassay based on the induction of alkaline phosphatase activity in myoblastic murine C2C12 cells and the in vivo bioassay consisting of treating calvarial critical-size defects in rats confirmed its bioactivity, which matched the analogous literature data for hBMP-2.



Calvarial critical-size defect, HBMP-2, Osteoinductor, Periplasmic expression

Como citar

Cells, v. 10, n. 12, 2021.