Examining region-based methods for land cover classification using stochastic distances

dc.contributor.authorNegri, R. G. [UNESP]
dc.contributor.authorDutra, L. V.
dc.contributor.authorSant'Anna, S. J.S.
dc.contributor.authorLu, D.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionINPE – Inst. Nacional de Pesquisas Espaciais
dc.contributor.institutionMSU – Michigan State University
dc.date.accessioned2018-12-11T16:42:01Z
dc.date.available2018-12-11T16:42:01Z
dc.date.issued2016-04-17
dc.description.abstractABSTRACT: A recent alternative to standard pixel-based classification of remote-sensing data is region-based classification, which has proved to be particularly useful when analysing high-resolution imagery of complex environments, such as urban areas, or when addressing noisy data, such as synthetic aperture radar (SAR) images. First, following certain criteria, the imagery is decomposed into homogeneous regions, and then each region is classified into a class of interest. The usual method for region-based classification involves using stochastic distances, which measure the distances between the pixel distributions inside an unknown region and the representative distributions of each class. The class, which is at the minimum distance from the unknown region distribution, is assigned to the region and this procedure is termed stochastic minimum distance classification (SMDC). This study reports the use of methods derived from the original SMDC, Support Vector Machine (SVM), and graph theory, with the objective of identifying the most robust and accurate classification methods. The equivalent pixel-based versions of region-based analysed methods were included for comparison. A case study near the Tapajós National Forest, in Pará state, Brazil, was investigated using ALOS PALSAR data. This study showed that methods based on the nearest neighbour, derived from SMDC, and SVM, with a specific kernel function, are more accurate and robust than the other analysed methods for region-based classification. Furthermore, pixel-based methods are not indicated to perform the classification of images with a strong presence of noise, such as SAR images.en
dc.description.affiliationInstituto de Ciência e Tecnologia UNESP – Univ. Estadual Paulista
dc.description.affiliationDivisão de Processamento de Imagens INPE – Inst. Nacional de Pesquisas Espaciais
dc.description.affiliationCenter for Global Change and Earth Observations MSU – Michigan State University
dc.description.affiliationUnespInstituto de Ciência e Tecnologia UNESP – Univ. Estadual Paulista
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 151571/2013-9
dc.description.sponsorshipIdFAPESP: 2014/14830-8
dc.description.sponsorshipIdCNPq: 307666/2011-5
dc.description.sponsorshipIdCNPq: 401528/2012-0
dc.format.extent1902-1921
dc.identifierhttp://dx.doi.org/10.1080/01431161.2016.1165883
dc.identifier.citationInternational Journal of Remote Sensing, v. 37, n. 8, p. 1902-1921, 2016.
dc.identifier.doi10.1080/01431161.2016.1165883
dc.identifier.file2-s2.0-84963818881.pdf
dc.identifier.issn1366-5901
dc.identifier.issn0143-1161
dc.identifier.scopus2-s2.0-84963818881
dc.identifier.urihttp://hdl.handle.net/11449/168580
dc.language.isoeng
dc.relation.ispartofInternational Journal of Remote Sensing
dc.relation.ispartofsjr0,796
dc.relation.ispartofsjr0,796
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleExamining region-based methods for land cover classification using stochastic distancesen
dc.typeArtigo
unesp.author.orcid0000-0002-4808-2362[1]
unesp.author.orcid0000-0002-7757-039X[2]
unesp.author.orcid0000-0003-4767-5710[4]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84963818881.pdf
Tamanho:
3.98 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções