The Feigenbaum's delta for a high dissipative bouncing ball model

Carregando...
Imagem de Miniatura

Data

2008-03-01

Autores

Oliveira, Diego F. M. [UNESP]
Leonel, Edson Denis [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Sociedade Brasileira de Física

Resumo

We have studied a dissipative version of a one-dimensional Fermi accelerator model. The dynamics of the model is described in terms of a two-dimensional, nonlinear area-contracting map. The dissipation is introduced via inelastic collisions of the particle with the walls and we consider the dynamics in the regime of high dissipation. For such a regime, the model exhibits a route to chaos known as period doubling and we obtain a constant along the bifurcations so called the Feigenbaum's number delta.

Descrição

Palavras-chave

Bouncing Ball Model, Dissipation, Lyapunov Exponent, Feigenbaum number

Como citar

Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 38, n. 1, p. 62-64, 2008.