Recommendation Systems: A Deep Learning Oriented Perspective
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
The massive use of the digital platforms has provided an exponential increase at the amount of data consumed and daily generated. Thus, there is a data overload which directly affects the consume experience of digital products, whether at find a news, consume an e-commerce product or to choose a movie in a streaming platform. In this context, emerge the recommendation systems, which have the finality of provide an efficient way to comprehend the user predilections and to recommend direct items. Thus, this work brings the classical concepts and techniques already used, as well as analyzes their use along with deep learning, which through evaluated results has a grater capability to obtain implicit relationships between users and items, providing recommendations with better quality and accuracy. Furthermore, considering the review of the literature and analysis provided, an architectural model for recommendation system based on deep learning is proposed, which is defined as a hybrid system.
Descrição
Palavras-chave
Collaborative Filtering, Content-Based, Deep Learning, Hybrid Approach, Recommendation Systems
Idioma
Inglês
Citação
International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 682-689.