Publicação:
Using UAV and Multispectral Images to Estimate Peanut Maturity Variability on Irrigated and Rainfed Fields Applying Linear Models and Artificial Neural Networks

dc.contributor.authorSantos, Adão F.
dc.contributor.authorLacerda, Lorena N.
dc.contributor.authorRossi, Chiara
dc.contributor.authorMoreno, Leticia De A.
dc.contributor.authorOliveira, Mailson F.
dc.contributor.authorPilon, Cristiane
dc.contributor.authorSilva, Rouverson P. [UNESP]
dc.contributor.authorVellidis, George
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institution(UGA)
dc.contributor.institutionAuburn University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T12:09:44Z
dc.date.available2022-05-01T12:09:44Z
dc.date.issued2022-01-01
dc.description.abstractUsing UAV and multispectral images has contributed to identifying field variability and improving crop management through different data modeling methods. However, knowledge on application of these tools to manage peanut maturity variability is still lacking. Therefore, the objective of this study was to compare and validate linear and multiple linear regression with models using artificial neural networks (ANN) for estimating peanut maturity under irrigated and rainfed conditions. The models were trained (80% dataset) and tested (20% dataset) using results from the 2018 and 2019 growing seasons from irrigated and rainfed fields. In each field, plant reflectance was collected weekly from 90 days after planting using a UAV-mounted multispectral camera. Images were used to develop vegetation indices (VIs). Peanut pods were collected on the same dates as the UAV flights for maturity assessment using the peanut maturity index (PMI). The precision and accuracy of the linear models to estimate PMI using VIs were, in general, greater in irrigated fields with R2 > 0.40 than in rainfed areas, which had a maximum R2 value of 0.21. Multiple linear regressions combining adjusted growing degree days (aGDD) and VIs resulted in decreased RMSE for both irrigated and rainfed conditions and increased R2 in irrigated areas. However, these models did not perform successfully in the test process. On the other hand, ANN models that included VIs and aGDD showed accuracy of R2 = 0.91 in irrigated areas, regardless of using Multilayer Perceptron (MLP, RMSE = 0.062) or Radial Basis Function (RBF, RMSE = 0.065), as well as low tendency (1:1 line). These results indicated that, regardless of the ANN architecture used to predict complex and nonlinear variables, peanut maturity can be estimated accurately through models with multiple inputs using VIs and aGDD. Although the accuracy of the MLP or RBF models for irrigated and rainfed areas separately was high, the overall ANN models using both irrigated and rainfed areas can be used to predict peanut maturity with the same precision.en
dc.description.affiliationDepartment of Agriculture School of Agricultural Sciences of Lavras Federal University of Lavras (UFLA), Lavras
dc.description.affiliationDepartment of Crop & Soil Sciences University of Georgia (UGA)
dc.description.affiliationCrop Soil and Environmental Sciences Auburn University
dc.description.affiliationDepartment of Engineering and Mathematical Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (UNESP), Jaboticabal
dc.description.affiliationUnespDepartment of Engineering and Mathematical Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (UNESP), Jaboticabal
dc.identifierhttp://dx.doi.org/10.3390/rs14010093
dc.identifier.citationRemote Sensing, v. 14, n. 1, 2022.
dc.identifier.doi10.3390/rs14010093
dc.identifier.issn2072-4292
dc.identifier.scopus2-s2.0-85122837113
dc.identifier.urihttp://hdl.handle.net/11449/234008
dc.language.isoeng
dc.relation.ispartofRemote Sensing
dc.sourceScopus
dc.subjectArachis hypogaea L
dc.subjectArtificial intelligence
dc.subjectRemote sensing
dc.subjectVegetation index
dc.titleUsing UAV and Multispectral Images to Estimate Peanut Maturity Variability on Irrigated and Rainfed Fields Applying Linear Models and Artificial Neural Networksen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-3405-5360[1]
unesp.author.orcid0000-0002-7426-942X[2]
unesp.author.orcid0000-0003-4771-0424[5]
unesp.author.orcid0000-0001-8852-2548[7]
unesp.author.orcid0000-0002-5425-241X[8]
unesp.departmentEngenharia Rural - FCAVpt

Arquivos