Publicação: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold
dc.contributor.author | Bastos, Jéfferson L.R. [UNESP] | |
dc.contributor.author | Buzzi, Claudio A. [UNESP] | |
dc.contributor.author | Llibre, Jaume | |
dc.contributor.author | Novaes, Douglas D. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Edifici C Facultat de Ciències | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2019-10-06T15:41:41Z | |
dc.date.available | 2019-10-06T15:41:41Z | |
dc.date.issued | 2019-09-05 | |
dc.description.abstract | We study the family of piecewise linear differential systems in the plane with two pieces separated by a cubic curve. Our main result is that 7 is a lower bound for the Hilbert number of this family. In order to get our main result, we develop the Melnikov functions for a class of nonsmooth differential systems, which generalizes, up to order 2, some previous results in the literature. Whereas the first order Melnikov function for the nonsmooth case remains the same as for the smooth one (i.e. the first order averaged function) the second order Melnikov function for the nonsmooth case is different from the smooth one (i.e. the second order averaged function). We show that, in this case, a new term depending on the jump of discontinuity and on the geometry of the switching manifold is added to the second order averaged function. | en |
dc.description.affiliation | Universidade Estadual Paulista IBILCE-UNESP, Av. Cristovão Colombo, 2265 | |
dc.description.affiliation | Universitat Autònoma de Barcelona UAB Edifici C Facultat de Ciències, Bellaterra | |
dc.description.affiliation | Universidade Estadual de Campinas IMECC-UNICAMP, R. Sérgio Buarque de Holanda, 651 | |
dc.description.affiliationUnesp | Universidade Estadual Paulista IBILCE-UNESP, Av. Cristovão Colombo, 2265 | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Agència de Gestió d’Ajuts Universitaris i de Recerca | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad, Gobierno de España | |
dc.description.sponsorshipId | FAPESP: 2013/24541-0 | |
dc.description.sponsorshipId | Agència de Gestió d’Ajuts Universitaris i de Recerca: 2014SGR-568 | |
dc.description.sponsorshipId | FAPESP: 2016/11471-2 | |
dc.description.sponsorshipId | FAPESP: 2018/16430-8 | |
dc.description.sponsorshipId | CNPq: 306649/2018-7 | |
dc.description.sponsorshipId | CNPq: 438975/2018-9 | |
dc.description.sponsorshipId | Ministerio de Economía, Industria y Competitividad, Gobierno de España: MTM2013-40998-P | |
dc.format.extent | 3748-3767 | |
dc.identifier | http://dx.doi.org/10.1016/j.jde.2019.04.019 | |
dc.identifier.citation | Journal of Differential Equations, v. 267, n. 6, p. 3748-3767, 2019. | |
dc.identifier.doi | 10.1016/j.jde.2019.04.019 | |
dc.identifier.issn | 1090-2732 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.lattes | 6682867760717445 | |
dc.identifier.orcid | 0000-0003-2037-8417 | |
dc.identifier.scopus | 2-s2.0-85065018475 | |
dc.identifier.uri | http://hdl.handle.net/11449/187607 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Differential Equations | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Averaging theory | |
dc.subject | Limit cycles | |
dc.subject | Melnikov theory | |
dc.subject | Nonlinear switching manifold | |
dc.subject | Nonsmooth differential systems | |
dc.subject | Piecewise linear differential systems | |
dc.title | Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6682867760717445[2] | |
unesp.author.orcid | 0000-0003-2037-8417[2] | |
unesp.author.orcid | 0000-0002-9511-5999[3] | |
unesp.author.orcid | 0000-0002-9147-8442[4] |