Publicação:
Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold

dc.contributor.authorBastos, Jéfferson L.R. [UNESP]
dc.contributor.authorBuzzi, Claudio A. [UNESP]
dc.contributor.authorLlibre, Jaume
dc.contributor.authorNovaes, Douglas D.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEdifici C Facultat de Ciències
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2019-10-06T15:41:41Z
dc.date.available2019-10-06T15:41:41Z
dc.date.issued2019-09-05
dc.description.abstractWe study the family of piecewise linear differential systems in the plane with two pieces separated by a cubic curve. Our main result is that 7 is a lower bound for the Hilbert number of this family. In order to get our main result, we develop the Melnikov functions for a class of nonsmooth differential systems, which generalizes, up to order 2, some previous results in the literature. Whereas the first order Melnikov function for the nonsmooth case remains the same as for the smooth one (i.e. the first order averaged function) the second order Melnikov function for the nonsmooth case is different from the smooth one (i.e. the second order averaged function). We show that, in this case, a new term depending on the jump of discontinuity and on the geometry of the switching manifold is added to the second order averaged function.en
dc.description.affiliationUniversidade Estadual Paulista IBILCE-UNESP, Av. Cristovão Colombo, 2265
dc.description.affiliationUniversitat Autònoma de Barcelona UAB Edifici C Facultat de Ciències, Bellaterra
dc.description.affiliationUniversidade Estadual de Campinas IMECC-UNICAMP, R. Sérgio Buarque de Holanda, 651
dc.description.affiliationUnespUniversidade Estadual Paulista IBILCE-UNESP, Av. Cristovão Colombo, 2265
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipAgència de Gestió d’Ajuts Universitaris i de Recerca
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad, Gobierno de España
dc.description.sponsorshipIdFAPESP: 2013/24541-0
dc.description.sponsorshipIdAgència de Gestió d’Ajuts Universitaris i de Recerca: 2014SGR-568
dc.description.sponsorshipIdFAPESP: 2016/11471-2
dc.description.sponsorshipIdFAPESP: 2018/16430-8
dc.description.sponsorshipIdCNPq: 306649/2018-7
dc.description.sponsorshipIdCNPq: 438975/2018-9
dc.description.sponsorshipIdMinisterio de Economía, Industria y Competitividad, Gobierno de España: MTM2013-40998-P
dc.format.extent3748-3767
dc.identifierhttp://dx.doi.org/10.1016/j.jde.2019.04.019
dc.identifier.citationJournal of Differential Equations, v. 267, n. 6, p. 3748-3767, 2019.
dc.identifier.doi10.1016/j.jde.2019.04.019
dc.identifier.issn1090-2732
dc.identifier.issn0022-0396
dc.identifier.lattes6682867760717445
dc.identifier.orcid0000-0003-2037-8417
dc.identifier.scopus2-s2.0-85065018475
dc.identifier.urihttp://hdl.handle.net/11449/187607
dc.language.isoeng
dc.relation.ispartofJournal of Differential Equations
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAveraging theory
dc.subjectLimit cycles
dc.subjectMelnikov theory
dc.subjectNonlinear switching manifold
dc.subjectNonsmooth differential systems
dc.subjectPiecewise linear differential systems
dc.titleMelnikov analysis in nonsmooth differential systems with nonlinear switching manifolden
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes6682867760717445[2]
unesp.author.orcid0000-0003-2037-8417[2]
unesp.author.orcid0000-0002-9511-5999[3]
unesp.author.orcid0000-0002-9147-8442[4]

Arquivos

Coleções