Intelligent Network Security Monitoring Based on Optimum-Path Forest Clustering

Nenhuma Miniatura disponível

Data

2019-03-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee-inst Electrical Electronics Engineers Inc

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Distinguishing outliers from normal data in wireless sensor networks has been a big challenge in the anomaly detection domain, mostly due to the nature of the anomalies, such as software or hardware failures, reading errors or malicious attacks, just to name a few. In this article, we introduce an anomaly detection-based OPF classifier in the aforementioned context. The results are compared against one-class support vector machines and multivariate Gaussian distribution. Additionally, we also propose to employ meta-heuristic optimization techniques to fine-tune the OPF classifier in the context of anomaly detection in wireless sensor networks.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Ieee Network. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 33, n. 2, p. 126-131, 2019.

Itens relacionados