Intelligent Network Security Monitoring Based on Optimum-Path Forest Clustering
Nenhuma Miniatura disponível
Data
2019-03-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee-inst Electrical Electronics Engineers Inc
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
Distinguishing outliers from normal data in wireless sensor networks has been a big challenge in the anomaly detection domain, mostly due to the nature of the anomalies, such as software or hardware failures, reading errors or malicious attacks, just to name a few. In this article, we introduce an anomaly detection-based OPF classifier in the aforementioned context. The results are compared against one-class support vector machines and multivariate Gaussian distribution. Additionally, we also propose to employ meta-heuristic optimization techniques to fine-tune the OPF classifier in the context of anomaly detection in wireless sensor networks.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Ieee Network. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 33, n. 2, p. 126-131, 2019.