Intelligent Network Security Monitoring Based on Optimum-Path Forest Clustering
dc.contributor.author | Guimaraes, Raniere Rocha | |
dc.contributor.author | Passos Jr, Leandro A. | |
dc.contributor.author | Holanda Filho, Raimir | |
dc.contributor.author | Albuquerque, Victor Hugo C. de | |
dc.contributor.author | Rodrigues, Joel J. P. C. | |
dc.contributor.author | Komarov, Mikhail M. | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Univ Fortaleza | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Natl Inst Telecommun Inatel | |
dc.contributor.institution | Inst Telecomunicacoes | |
dc.contributor.institution | Natl Res Univ Higher Sch Econ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-05T19:56:28Z | |
dc.date.available | 2019-10-05T19:56:28Z | |
dc.date.issued | 2019-03-01 | |
dc.description.abstract | Distinguishing outliers from normal data in wireless sensor networks has been a big challenge in the anomaly detection domain, mostly due to the nature of the anomalies, such as software or hardware failures, reading errors or malicious attacks, just to name a few. In this article, we introduce an anomaly detection-based OPF classifier in the aforementioned context. The results are compared against one-class support vector machines and multivariate Gaussian distribution. Additionally, we also propose to employ meta-heuristic optimization techniques to fine-tune the OPF classifier in the context of anomaly detection in wireless sensor networks. | en |
dc.description.affiliation | Univ Fortaleza, Fortaleza, Ceara, Brazil | |
dc.description.affiliation | Univ Fed Sao Carlos, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Natl Inst Telecommun Inatel, Lisbon, Portugal | |
dc.description.affiliation | Inst Telecomunicacoes, Lisbon, Portugal | |
dc.description.affiliation | Natl Res Univ Higher Sch Econ, Dept Innovat & Business IT, Sch Business Informat, Fac Business & Management, Moscow, Russia | |
dc.description.affiliation | Sao Paulo State Univ, Comp Sci Dept, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Comp Sci Dept, Sao Paulo, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | FCT-Fundacao para a Ciencia e a Tecnologia | |
dc.description.sponsorship | Finep | |
dc.description.sponsorship | Funtel under Centro de Referencia em Radiocomunicacoes - CRR project of the Instituto Nacional de Telecomunicacoes (Inatel), Brazil. | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 309335/2017-5 | |
dc.description.sponsorshipId | CNPq: 309335/2017-5 | |
dc.description.sponsorshipId | CNPq: 304315/2017-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FCT-Fundacao para a Ciencia e a Tecnologia: UID/EEA/50008/2013 | |
dc.description.sponsorshipId | Funtel under Centro de Referencia em Radiocomunicacoes - CRR project of the Instituto Nacional de Telecomunicacoes (Inatel), Brazil.: 01.14.0231.00 | |
dc.description.sponsorshipId | FUNDUNESP: 2597.2017 | |
dc.format.extent | 126-131 | |
dc.identifier | http://dx.doi.org/10.1109/MNET.2018.1800151 | |
dc.identifier.citation | Ieee Network. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 33, n. 2, p. 126-131, 2019. | |
dc.identifier.doi | 10.1109/MNET.2018.1800151 | |
dc.identifier.issn | 0890-8044 | |
dc.identifier.uri | http://hdl.handle.net/11449/186701 | |
dc.identifier.wos | WOS:000463036200018 | |
dc.language.iso | eng | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Network | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Intelligent Network Security Monitoring Based on Optimum-Path Forest Clustering | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee-inst Electrical Electronics Engineers Inc | |
unesp.author.orcid | 0000-0003-3886-4309[4] | |
unesp.author.orcid | 0000-0001-8657-3800[5] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |