Learning Streamed Attention Network from Descriptor Images for Cross-Resolution 3D Face Recognition
Nenhuma Miniatura disponível
Data
2023-01-23
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this article, we propose a hybrid framework for cross-resolution 3D face recognition which utilizes a Streamed Attention Network (SAN) that combines handcrafted features with Convolutional Neural Networks (CNNs). It consists of two main stages: first, we process the depth images to extract low-level surface descriptors and derive the corresponding Descriptor Images (DIs), represented as four-channel images. To build the DIs, we propose a variation of the 3D Local Binary Pattern (3DLBP) operator that encodes depth differences using a sigmoid function. Then, we design a CNN that learns from these DIs. The peculiarity of our solution consists in processing each channel of the input image separately, and fusing the contribution of each channel by means of both self- and cross-attention mechanisms. This strategy showed two main advantages over the direct application of Deep-CNN to depth images of the face; on the one hand, the DIs can reduce the diversity between high- and low-resolution data by encoding surface properties that are robust to resolution differences. On the other, it allows a better exploitation of the richer information provided by low-level features, resulting in improved recognition. We evaluated the proposed architecture in a challenging cross-dataset, cross-resolution scenario. To this aim, we first train the network on scanner-resolution 3D data. Next, we utilize the pre-trained network as feature extractor on low-resolution data, where the output of the last fully connected layer is used as face descriptor. Other than standard benchmarks, we also perform experiments on a newly collected dataset of paired high- and low-resolution 3D faces. We use the high-resolution data as gallery, while low-resolution faces are used as probe, allowing us to assess the real gap existing between these two types of data. Extensive experiments on low-resolution 3D face benchmarks show promising results with respect to state-of-the-art methods.
Descrição
Idioma
Inglês
Como citar
ACM Transactions on Multimedia Computing, Communications and Applications, v. 19, n. 1, 2023.