Incommensurate spin-density-wave and metal-insulator transition in the one-dimensional periodic Anderson model

Imagem de Miniatura






Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume


Amer Physical Soc



Direito de acesso

Acesso restrito


We have used the density-matrix renormalization group method to study the ground-state properties of the symmetric periodic Anderson model in one dimension. We have considered lattices with up to N-s = 50 sites, and electron densities ranging from quarter to half filling. Through the calculation of energies, correlation functions, and their structure factors, together with careful extrapolations (toward N-s -> infinity), we were able to map out a phase diagram U vs n, where U is the electronic repulsion on f orbitals, and n is the electronic density, for a fixed value of the hybridization. At quarter filling, n = 1, our data is consistent with a transition at U-c1 similar or equal to 2, between a paramagnetic (PM) metal and a spin-density-wave (SDW) insulator; overall, the region U less than or similar to 2 corresponds to a PM metal for all n < 2. For 1 < n less than or similar to 1.5 a ferromagnetic phase is present within a range of U, while for 1.5 less than or similar to n < 2, we find an incommensurate SDW phase; above a certain U-c(n), the system displays a Ruderman-Kittel-Kasuya-Yosida behavior, in which the magnetic wave vector is determined by the occupation of the conduction band. At half filling, the system is an insulating spin liquid, but with a crossover between weak and strong magnetic correlations.





Como citar

Physical Review B. College Pk: Amer Physical Soc, v. 84, n. 7, p. 9, 2011.

Itens relacionados