Publicação: Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N
dc.contributor.author | Bastos, Waldemar D. [UNESP] | |
dc.contributor.author | Miyagaki, Olimpio H. | |
dc.contributor.author | Vieira, Ronei S. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fed Juiz de Fora | |
dc.contributor.institution | Ctr Fed Educ Tecnol Minas Gerais | |
dc.date.accessioned | 2015-03-18T15:52:55Z | |
dc.date.available | 2015-03-18T15:52:55Z | |
dc.date.issued | 2014-12-01 | |
dc.description.abstract | We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach. | en |
dc.description.affiliation | Univ Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliation | Univ Fed Juiz de Fora, BR-36036330 Juiz De Fora, MG, Brazil | |
dc.description.affiliation | Ctr Fed Educ Tecnol Minas Gerais, BR-35503822 Divinopolis, MG, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
dc.description.sponsorship | Centro Federal de Educacao Tecnologica de Minas Gerais/Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPEMIG: CEX-APQ 00025-11 | |
dc.format.extent | 213-231 | |
dc.identifier | http://dx.doi.org/10.1007/s00032-014-0224-8 | |
dc.identifier.citation | Milan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014. | |
dc.identifier.doi | 10.1007/s00032-014-0224-8 | |
dc.identifier.issn | 1424-9286 | |
dc.identifier.uri | http://hdl.handle.net/11449/116243 | |
dc.identifier.wos | WOS:000345142800002 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Milan Journal Of Mathematics | |
dc.relation.ispartofjcr | 0.781 | |
dc.relation.ispartofsjr | 0,544 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Positive solutions | en |
dc.subject | Schrodinger operator | en |
dc.subject | Variational methods for second-order elliptic equations | en |
dc.subject | Degenerate elliptic equations | en |
dc.title | Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication |