Prediction of soybean yield cultivated under subtropical conditions using artificial neural networks
Nenhuma Miniatura disponível
Data
2023-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Mathematical models that incorporate biotic and abiotic attributes are important tools for improving fertilizer use efficiency and reducing production costs for soybean [Glycine max (L.) Merrill] crop. In this study, artificial neural networks (ANNs) were used to estimate soybean grain yield (GY) under subtropical conditions in Brazil from plant morphological and nutritional data collected from 16 cultivars in two growing seasons. The ANNs were adequately trained, with a mean squared error of approximately 10−5 between the outputs obtained (via ANN) and desired (via experimental field), equivalent to a mean percentage error of 70.1 kg ha−1 (1.6%), confirming their efficacy as a tool to estimate GY. Smaller plant height, higher foliar calcium, magnesium and chlorophyll concentrations, and greater numbers of grains per pod and branches per plant were associated with higher GY, whereas oil content, crude protein content, and foliar manganese and potassium concentrations had no predicted effects on GY.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Agronomy Journal.