Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Prediction of soybean yield cultivated under subtropical conditions using artificial neural networks

Nenhuma Miniatura disponível

Data

2023-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Mathematical models that incorporate biotic and abiotic attributes are important tools for improving fertilizer use efficiency and reducing production costs for soybean [Glycine max (L.) Merrill] crop. In this study, artificial neural networks (ANNs) were used to estimate soybean grain yield (GY) under subtropical conditions in Brazil from plant morphological and nutritional data collected from 16 cultivars in two growing seasons. The ANNs were adequately trained, with a mean squared error of approximately 10−5 between the outputs obtained (via ANN) and desired (via experimental field), equivalent to a mean percentage error of 70.1 kg ha−1 (1.6%), confirming their efficacy as a tool to estimate GY. Smaller plant height, higher foliar calcium, magnesium and chlorophyll concentrations, and greater numbers of grains per pod and branches per plant were associated with higher GY, whereas oil content, crude protein content, and foliar manganese and potassium concentrations had no predicted effects on GY.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Agronomy Journal.

Itens relacionados

Financiadores