Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

dc.contributor.authorSaarinen, Ninni
dc.contributor.authorVastaranta, Mikko
dc.contributor.authorNasi, Roope
dc.contributor.authorRosnell, Tomi
dc.contributor.authorHakala, Teemu
dc.contributor.authorHonkavaara, Eija
dc.contributor.authorWulder, Michael A.
dc.contributor.authorLuoma, Ville
dc.contributor.authorTommaselli, Antonio M. G. [UNESP]
dc.contributor.authorImai, Nilton N. [UNESP]
dc.contributor.authorRibeiro, Eduardo A. W.
dc.contributor.authorGuimaraes, Raul B. [UNESP]
dc.contributor.authorHolopainen, Markus
dc.contributor.authorHyyppa, Juha
dc.contributor.institutionUniv Helsinki
dc.contributor.institutionUniv Eastern Finland
dc.contributor.institutionNatl Land Survey
dc.contributor.institutionNat Resources Canada
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCatarinense Fed Inst
dc.date.accessioned2018-11-26T17:48:42Z
dc.date.available2018-11-26T17:48:42Z
dc.date.issued2018-02-01
dc.description.abstractForests are the most diverse terrestrial ecosystems and their biological diversity includes trees, but also other plants, animals, and micro-organisms. One-third of the forested land is in boreal zone; therefore, changes in biological diversity in boreal forests can shape biodiversity, even at global scale. Several forest attributes, including size variability, amount of dead wood, and tree species richness, can be applied in assessing biodiversity of a forest ecosystem. Remote sensing offers complimentary tool for traditional field measurements in mapping and monitoring forest biodiversity. Recent development of small unmanned aerial vehicles (UAVs) enable the detailed characterization of forest ecosystems through providing data with high spatial but also temporal resolution at reasonable costs. The objective here is to deepen the knowledge about assessment of plot-level biodiversity indicators in boreal forests with hyperspectral imagery and photogrammetric point clouds from a UAV. We applied individual tree crown approach (ITC) and semi-individual tree crown approach (semi-ITC) in estimating plot-level biodiversity indicators. Structural metrics from the photogrammetric point clouds were used together with either spectral features or vegetation indices derived from hyperspectral imagery. Biodiversity indicators like the amount of dead wood and species richness were mainly underestimated with UAV-based hyperspectral imagery and photogrammetric point clouds. Indicators of structural variability (i.e., standard deviation in diameter-at-breast height and tree height) were the most accurately estimated biodiversity indicators with relative RMSE between 24.4% and 29.3% with semi-ITC. The largest relative errors occurred for predicting deciduous trees (especially aspen and alder), partly due to their small amount within the study area. Thus, especially the structural diversity was reliably predicted by integrating the three-dimensional and spectral datasets of UAV-based point clouds and hyperspectral imaging, and can therefore be further utilized in ecological studies, such as biodiversity monitoring.en
dc.description.affiliationUniv Helsinki, Dept Forest Sci, POB 27, FIN-00014 Helsinki, Finland
dc.description.affiliationUniv Eastern Finland, Sch Forest Sci, POB 111, Joensuu 80101, Finland
dc.description.affiliationNatl Land Survey, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Geodeetinrinne 2, Masala 02431, Finland
dc.description.affiliationNat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada
dc.description.affiliationSao Paulo State Univ, Dept Cartog, Roberto Simonsen 305, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationCatarinense Fed Inst, Rodovia Duque de Caxias,Km 6 S-N, BR-89240000 Sao Francisco Do Sul, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Cartog, Roberto Simonsen 305, BR-19060900 Presidente Prudente, Brazil
dc.description.sponsorshipAcademy of Finland through a project Unmanned Airborne Vehicle-based 4D Remote Sensing for Mapping Rain Forest Biodiversity and Its Change in Brazil
dc.description.sponsorshipCentre of Excellence in Laser Scanning Research
dc.description.sponsorshipHame University of Applied Science
dc.description.sponsorshipIdAcademy of Finland through a project Unmanned Airborne Vehicle-based 4D Remote Sensing for Mapping Rain Forest Biodiversity and Its Change in Brazil: 273806
dc.description.sponsorshipIdCentre of Excellence in Laser Scanning Research: 272195
dc.format.extent22
dc.identifierhttp://dx.doi.org/10.3390/rs10020338
dc.identifier.citationRemote Sensing. Basel: Mdpi, v. 10, n. 2, 22 p., 2018.
dc.identifier.doi10.3390/rs10020338
dc.identifier.fileWOS000427542100182.pdf
dc.identifier.issn2072-4292
dc.identifier.urihttp://hdl.handle.net/11449/163998
dc.identifier.wosWOS:000427542100182
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofRemote Sensing
dc.relation.ispartofsjr1,386
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectUAS
dc.subjectphotogrammetry
dc.subjectremote sensing
dc.subjectstructural diversity
dc.subjectsize variability
dc.subjectdead wood
dc.subjectold growth
dc.subjecttree species
dc.subject3D
dc.subjectspectral
dc.titleAssessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imagingen
dc.typeArtigo
dcterms.rightsHolderMdpi
unesp.author.lattes5493428631948910[9]
unesp.author.orcid0000-0003-2730-8892[1]
unesp.author.orcid0000-0001-6552-9122[2]
unesp.author.orcid0000-0002-5823-8180[3]
unesp.author.orcid0000-0002-7236-2145[6]
unesp.author.orcid0000-0003-0483-1103[9]
unesp.departmentCartografia - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000427542100182.pdf
Tamanho:
2.84 MB
Formato:
Adobe Portable Document Format
Descrição: