Publicação: Microstructure features and mechanical/electrochemical behavior of directionally solidified Al−6wt.%Cu−5wt.%Ni alloy
dc.contributor.author | RODRIGUES, Adilson Vitor | |
dc.contributor.author | LIMA, Thiago Soares | |
dc.contributor.author | VIDA, Talita Almeida | |
dc.contributor.author | BRITO, Crystopher [UNESP] | |
dc.contributor.author | GARCIA, Amauri | |
dc.contributor.author | CHEUNG, Noé | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Science and Technology of São Paulo - IFSP | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-28T19:40:59Z | |
dc.date.available | 2022-04-28T19:40:59Z | |
dc.date.issued | 2021-06-01 | |
dc.description.abstract | The effects of the addition of 5.0 wt.% Ni to an Al−6wt.%Cu alloy on the solidification cooling rate T˙ growth rate (VL), length scale of the representative phase of the microstructure, morphology/distribution of intermetallic compounds (IMCs) and on the resulting properties were investigated. Corrosion and tensile properties were determined on samples solidified under a wide range of T˙ along the length of a directionally solidified Al−6wt.%Cu−5.0wt.%Ni alloy casting. Experimental growth laws were derived relating the evolution of primary (λ1) and secondary (λ2) dendritic spacings with T˙ and VL. The elongation to fracture (δ) and the ultimate tensile strength (σU) were correlated with the inverse of the square root of λ1 along the length of the casting by Hall−Petch type experimental equations. The reinforcing effect provided by the addition of Ni in the alloy composition is shown to surpass that provided by the refinement of the dendritic microstructure. The highest corrosion resistance is associated with a microstructure formed by thin IMCs evenly distributed in the interdendritic regions, typical of samples that are solidified under higher T˙. | en |
dc.description.affiliation | Department of Manufacturing and Materials Engineering University of Campinas UNICAMP | |
dc.description.affiliation | Federal Institute of Education Science and Technology of São Paulo - IFSP | |
dc.description.affiliation | São Paulo State University - UNESP Campus of São João da Boa Vista São João da Boa Vista | |
dc.description.affiliationUnesp | São Paulo State University - UNESP Campus of São João da Boa Vista São João da Boa Vista | |
dc.format.extent | 1529-1549 | |
dc.identifier | http://dx.doi.org/10.1016/S1003-6326(21)65596-6 | |
dc.identifier.citation | Transactions of Nonferrous Metals Society of China (English Edition), v. 31, n. 6, p. 1529-1549, 2021. | |
dc.identifier.doi | 10.1016/S1003-6326(21)65596-6 | |
dc.identifier.issn | 2210-3384 | |
dc.identifier.issn | 1003-6326 | |
dc.identifier.scopus | 2-s2.0-85108871555 | |
dc.identifier.uri | http://hdl.handle.net/11449/221862 | |
dc.language.iso | eng | |
dc.relation.ispartof | Transactions of Nonferrous Metals Society of China (English Edition) | |
dc.source | Scopus | |
dc.subject | Al−Cu−Ni alloys | |
dc.subject | as-cast microstructures | |
dc.subject | corrosion resistance | |
dc.subject | dendritic spacings | |
dc.subject | tensile properties | |
dc.title | Microstructure features and mechanical/electrochemical behavior of directionally solidified Al−6wt.%Cu−5wt.%Ni alloy | en |
dc.type | Artigo | |
dspace.entity.type | Publication |