Publicação:
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations

dc.contributor.authorD'Addona, Doriana M.
dc.contributor.authorMatarazzo, Davide
dc.contributor.authorDe Aguiar, Paulo R. [UNESP]
dc.contributor.authorBianchi, Eduardo C. [UNESP]
dc.contributor.authorMartins, Cesar H.R. [UNESP]
dc.contributor.institutionUniversity of Naples Federico II
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:28:16Z
dc.date.available2018-12-11T17:28:16Z
dc.date.issued2016-01-01
dc.description.abstractCognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.en
dc.description.affiliationFraunhofer Joint Laboratory of Excellence on Advanced Production Technology (Fh-J-LEAPT Naples) Department of Chemical Material and Industrial Production Engineering University of Naples Federico II, Piazzale Tecchio 80
dc.description.affiliationUniversity Estadual Paulista-UNESP Faculty of Engineering Department of Electrical Engineering
dc.description.affiliationUnespUniversity Estadual Paulista-UNESP Faculty of Engineering Department of Electrical Engineering
dc.format.extent431-436
dc.identifierhttp://dx.doi.org/10.1016/j.procir.2016.01.001
dc.identifier.citationProcedia CIRP, v. 41, p. 431-436.
dc.identifier.doi10.1016/j.procir.2016.01.001
dc.identifier.issn2212-8271
dc.identifier.scopus2-s2.0-84968779473
dc.identifier.urihttp://hdl.handle.net/11449/178025
dc.language.isoeng
dc.relation.ispartofProcedia CIRP
dc.relation.ispartofsjr0,668
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial neural networks
dc.subjectDressing
dc.subjectTool wear
dc.subjectVibration signal
dc.titleNeural Networks Tool Condition Monitoring in Single-point Dressing Operationsen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes1099152007574921[4]
unesp.author.orcid0000-0003-2675-4276[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentEngenharia Mecânica - FEBpt
unesp.departmentMorfologia - IBBpt

Arquivos