Logotipo do repositório
 

Publicação:
Some properties of classes of real self-reciprocal polynomials

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The purpose of this paper is twofold. Firstly we investigate the distribution, simplicity and monotonicity of the zeros around the unit circle and real line of the real self-reciprocal polynomials Rn(λ)(z)=1+λ(z+z2+...+zn-1)+zn, n≥. 2 and λ∈R. Secondly, as an application of the first results we give necessary and sufficient conditions to guarantee that all zeros of the self-reciprocal polynomials Sn(λ)(z)=∑k=0nsn, k(λ)zk, n≥. 2, with sn,0(λ)=sn, n(λ)=1, sn, n-k(λ)=sn, k(λ)=1+kλ, k=1,2,.,⌊n/2⌋ when n is odd, and sn, n-k(λ)=sn, k(λ)=1+kλ, k=. 1, 2,., n/2. -. 1, sn, n/2(λ)=(n/2)λ when n is even, lie on the unit circle, solving then an open problem given by Kim and Park in 2008.

Descrição

Palavras-chave

Interlacing, Monotonicity, Self-reciprocal polynomials, Unit circle, Zeros

Idioma

Inglês

Como citar

Journal of Mathematical Analysis and Applications, v. 433, n. 2, p. 1290-1304, 2016.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação