Some properties of classes of real self-reciprocal polynomials
Nenhuma Miniatura disponível
Data
2016-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The purpose of this paper is twofold. Firstly we investigate the distribution, simplicity and monotonicity of the zeros around the unit circle and real line of the real self-reciprocal polynomials Rn(λ)(z)=1+λ(z+z2+...+zn-1)+zn, n≥. 2 and λ∈R. Secondly, as an application of the first results we give necessary and sufficient conditions to guarantee that all zeros of the self-reciprocal polynomials Sn(λ)(z)=∑k=0nsn, k(λ)zk, n≥. 2, with sn,0(λ)=sn, n(λ)=1, sn, n-k(λ)=sn, k(λ)=1+kλ, k=1,2,.,⌊n/2⌋ when n is odd, and sn, n-k(λ)=sn, k(λ)=1+kλ, k=. 1, 2,., n/2. -. 1, sn, n/2(λ)=(n/2)λ when n is even, lie on the unit circle, solving then an open problem given by Kim and Park in 2008.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Mathematical Analysis and Applications, v. 433, n. 2, p. 1290-1304, 2016.