Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Stock closing price forecasting using ensembles of constructive neural networks

dc.contributor.authorJoão, Rafael Stoffalette
dc.contributor.authorGuidoni, Tarcisio Fonseca
dc.contributor.authorBertini, Joao Roberto
dc.contributor.authorNicoletti, Maria Do Carmo
dc.contributor.authorArtero, Almir Olivette [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionFACCAMP
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:24:51Z
dc.date.available2018-12-11T17:24:51Z
dc.date.issued2014-01-01
dc.description.abstractEfficient automatic systems which continuously learn over long periods of time, and manage to evolve its knowledge, by discarding obsolete parts of it and acquiring new ones to reflect recent data, are difficult to be constructed. This paper addresses neural network (NN) learning in non-stationary environments related to financial markets, aiming at forecasting stock closing price. To face up this dynamic scenario, an efficient NN model is required. Therefore, Constructive Neural Networks (CoNN) were employed due to its self-adaptation capability, in contrast to regular NN which demands parameter adjustment. This paper investigates a possible ensemble organization, composed by NN's trained with the Cascade Correlation CoNN algorithm. An ensemble is an effective approach to non-stationary learning because it provides pre-defined rules that enable new learners - with new knowledge - to take part of the ensemble along data stream processing. Results obtained with data stream related with four different stocks are then analysed and favorably compared with those obtained with the traditional MLP NNs, trained with Backpropagation.en
dc.description.affiliationDC-UFSCar
dc.description.affiliationICMC-USP
dc.description.affiliationFACCAMP
dc.description.affiliationFCT-UNESP
dc.description.affiliationUnespFCT-UNESP
dc.format.extent109-114
dc.identifierhttp://dx.doi.org/10.1109/BRACIS.2014.30
dc.identifier.citationProceedings - 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014, p. 109-114.
dc.identifier.doi10.1109/BRACIS.2014.30
dc.identifier.scopus2-s2.0-84922513971
dc.identifier.urihttp://hdl.handle.net/11449/177296
dc.language.isoeng
dc.relation.ispartofProceedings - 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBackpropagation
dc.subjectCascade Correlation
dc.subjectConstructive neural networks
dc.subjectEnsemble
dc.subjectLearning in non-stationary environments
dc.subjectTemporal data mining
dc.titleStock closing price forecasting using ensembles of constructive neural networksen
dc.typeTrabalho apresentado em evento
unesp.author.lattes6469656882616214[5]
unesp.author.orcid0000-0001-6824-7251[5]
unesp.departmentMatemática e Computação - FCTpt

Arquivos