Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification

dc.contributor.authorNachif Fernandes, Silas Evandro
dc.contributor.authorSouza, Andre Nunes de [UNESP]
dc.contributor.authorGastaldello, Danilo Sinkiti [UNESP]
dc.contributor.authorPereira, Danillo Roberto [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:35:08Z
dc.date.available2018-11-26T17:35:08Z
dc.date.issued2017-01-01
dc.description.abstractMachine learning techniques have been actively pursued in the last years, mainly due to the increasing number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight ensemble pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates and provide efficiency by reducing the ensemble size prior to combining the model. In this article, we present and validate an ensemble pruning approach for Optimum-Path Forest (OPF) classifiers based on metaheuristic optimization over general-purpose data sets to validate the effectiveness and efficiency of the proposed approach using distinct configurations in real and synthetic benchmark data sets, and thereafter, we apply the proposed approach in remote-sensing images to investigate the behaviour of theOPF classifier using pruning strategies. The image data sets were obtained from CBERS-2B, LANDSAT-5 TM, IKONOS-2 MS, and GEOEYE sensors, covering some areas of Brazil. The well-known Indian Pines data set was also used. In this work, we evaluate five different optimization algorithms for ensemble pruning, including that Particle Swarm Optimization, Harmony Search, Cuckoo Search, and Firefly Algorithm. In addition, we performed an empirical comparison between Support Vector Machine and OPF using the strategy of ensemble pruning. Experimental results showed the effectiveness and efficiency of ensemble pruning using OPF-based classification, especially concerning ensemble pruning using Harmony Search, which shows to be effective without degrading the performance when applied to large data sets, as well as a good data generalization.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent5736-5762
dc.identifierhttp://dx.doi.org/10.1080/01431161.2017.1346402
dc.identifier.citationInternational Journal Of Remote Sensing. Abingdon: Taylor & Francis Ltd, v. 38, n. 20, p. 5736-5762, 2017.
dc.identifier.doi10.1080/01431161.2017.1346402
dc.identifier.fileWOS000405206600015.pdf
dc.identifier.issn0143-1161
dc.identifier.urihttp://hdl.handle.net/11449/162976
dc.identifier.wosWOS:000405206600015
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofInternational Journal Of Remote Sensing
dc.relation.ispartofsjr0,796
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titlePruning optimum-path forest ensembles using metaheuristic optimization for land-cover classificationen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
unesp.author.lattes8212775960494686[2]
unesp.author.orcid0000-0002-8617-5404[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000405206600015.pdf
Tamanho:
5.86 MB
Formato:
Adobe Portable Document Format
Descrição: