Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification
dc.contributor.author | Nachif Fernandes, Silas Evandro | |
dc.contributor.author | Souza, Andre Nunes de [UNESP] | |
dc.contributor.author | Gastaldello, Danilo Sinkiti [UNESP] | |
dc.contributor.author | Pereira, Danillo Roberto [UNESP] | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:35:08Z | |
dc.date.available | 2018-11-26T17:35:08Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | Machine learning techniques have been actively pursued in the last years, mainly due to the increasing number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight ensemble pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates and provide efficiency by reducing the ensemble size prior to combining the model. In this article, we present and validate an ensemble pruning approach for Optimum-Path Forest (OPF) classifiers based on metaheuristic optimization over general-purpose data sets to validate the effectiveness and efficiency of the proposed approach using distinct configurations in real and synthetic benchmark data sets, and thereafter, we apply the proposed approach in remote-sensing images to investigate the behaviour of theOPF classifier using pruning strategies. The image data sets were obtained from CBERS-2B, LANDSAT-5 TM, IKONOS-2 MS, and GEOEYE sensors, covering some areas of Brazil. The well-known Indian Pines data set was also used. In this work, we evaluate five different optimization algorithms for ensemble pruning, including that Particle Swarm Optimization, Harmony Search, Cuckoo Search, and Firefly Algorithm. In addition, we performed an empirical comparison between Support Vector Machine and OPF using the strategy of ensemble pruning. Experimental results showed the effectiveness and efficiency of ensemble pruning using OPF-based classification, especially concerning ensemble pruning using Harmony Search, which shows to be effective without degrading the performance when applied to large data sets, as well as a good data generalization. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.format.extent | 5736-5762 | |
dc.identifier | http://dx.doi.org/10.1080/01431161.2017.1346402 | |
dc.identifier.citation | International Journal Of Remote Sensing. Abingdon: Taylor & Francis Ltd, v. 38, n. 20, p. 5736-5762, 2017. | |
dc.identifier.doi | 10.1080/01431161.2017.1346402 | |
dc.identifier.file | WOS000405206600015.pdf | |
dc.identifier.issn | 0143-1161 | |
dc.identifier.uri | http://hdl.handle.net/11449/162976 | |
dc.identifier.wos | WOS:000405206600015 | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis Ltd | |
dc.relation.ispartof | International Journal Of Remote Sensing | |
dc.relation.ispartofsjr | 0,796 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification | en |
dc.type | Artigo | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dcterms.rightsHolder | Taylor & Francis Ltd | |
unesp.author.lattes | 8212775960494686[2] | |
unesp.author.orcid | 0000-0002-8617-5404[2] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
unesp.department | Engenharia Elétrica - FEB | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000405206600015.pdf
- Tamanho:
- 5.86 MB
- Formato:
- Adobe Portable Document Format
- Descrição: