Handling dropout probability estimation in convolution neural networks using meta-heuristics
Arquivos
Data
2018-09-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
Deep learning-based approaches have been paramount in recent years, mainly due to their outstanding results in several application domains, ranging from face and object recognition to handwritten digit identification. Convolutional neural networks (CNNs) have attracted a considerable attention since they model the intrinsic and complex brain working mechanisms. However, one main shortcoming of such models concerns their overfitting problem, which prevents the network from predicting unseen data effectively. In this paper, we address this problem by means of properly selecting a regularization parameter known as dropout in the context of CNNs using meta-heuristic-driven techniques. As far as we know, this is the first attempt to tackle this issue using this methodology. Additionally, we also take into account a default dropout parameter and a dropout-less CNN for comparison purposes. The results revealed that optimizing dropout-based CNNs is worthwhile, mainly due to the easiness in finding suitable dropout probability values, without needing to set new parameters empirically.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Soft Computing. New York: Springer, v. 22, n. 18, p. 6147-6156, 2018.