Publicação:
Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism

dc.contributor.authorAvanço, Rafael Henrique
dc.contributor.authorNavarro, Hélio Aparecido
dc.contributor.authorBrasil, Reyolando M. L. R. F.
dc.contributor.authorBalthazar, José Manoel
dc.contributor.authorBueno, Átila Madureira [UNESP]
dc.contributor.authorTusset, Angelo Marcelo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionFederal University of ABC
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFederal University of Technology – Paraná
dc.date.accessioned2018-12-11T16:58:57Z
dc.date.available2018-12-11T16:58:57Z
dc.date.issued2016-06-01
dc.description.abstractThe nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.en
dc.description.affiliationDepartment of Mechanical Engineering University of São Paulo, Av. Trabalhador São-Carlense, nº 400
dc.description.affiliationFederal University of ABC, Santa Adélia Street, nº 166
dc.description.affiliationDepartment of Mechanical Engineering at Technological Institute of Aeronautics, Pça. Mal. Eduardo Gomes, nº 50
dc.description.affiliationUNESP: Sorocaba Control and Automation Engineering, Av. Três de Março
dc.description.affiliationDepartment of Mathematics Federal University of Technology – Paraná
dc.description.affiliationUnespUNESP: Sorocaba Control and Automation Engineering, Av. Três de Março
dc.format.extent1301-1320
dc.identifierhttp://dx.doi.org/10.1007/s11012-015-0310-1
dc.identifier.citationMeccanica, v. 51, n. 6, p. 1301-1320, 2016.
dc.identifier.doi10.1007/s11012-015-0310-1
dc.identifier.file2-s2.0-84945274799.pdf
dc.identifier.issn1572-9648
dc.identifier.issn0025-6455
dc.identifier.scopus2-s2.0-84945274799
dc.identifier.urihttp://hdl.handle.net/11449/172154
dc.language.isoeng
dc.relation.ispartofMeccanica
dc.relation.ispartofsjr0,814
dc.relation.ispartofsjr0,814
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectChaos
dc.subjectCrank-shaft-slider
dc.subjectParametric
dc.subjectPendulum
dc.titleStatements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanismen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes7416585768192991[5]
unesp.author.orcid0000-0003-2276-0230[1]
unesp.author.orcid0000-0002-1113-3330[5]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.departmentEngenharia de Controle e Automação - ICTSpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84945274799.pdf
Tamanho:
1.76 MB
Formato:
Adobe Portable Document Format
Descrição: