Publicação:
The Use of Space-Temporal Geostatistics in the Prediction of Maximum Air Temperature

dc.contributor.authorViana, Rosane Soares Moreira
dc.contributor.authorRodrigues, Gérson dos Santos
dc.contributor.authorMoreira, Demerval Soares [UNESP]
dc.contributor.authorLouzada, João Marcos
dc.contributor.authorRosa, Lidiane Maria Ferraz
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstituto Federal do Espírito Santos (IFES
dc.date.accessioned2023-07-29T12:24:50Z
dc.date.available2023-07-29T12:24:50Z
dc.date.issued2019-01-01
dc.description.abstractStochastic processes of spatio-temporal nature consist of phenomenons that are characterized by spatial and temporal variability. Currently, it is one of the great growing areas with diverse applications in environmental, geographic, biological, epidemiological sciences, among others. Certainly, conventional statistical methods are not adequate to modeling self-correlated structures in space and time. In fact, there are still major challenges regarding the computational implementation of the geostatistical methodology for the analysis of space-time processes, with emphasis on the spacetime package of the R program used in this study. Thus, this work aims to apply the geostatistical methodology of covariance functions in order to infer about the maximum air temperature of the State of Minas Gerais from 1996 to 2016, aiming to contribute with challenges such as heating uncontrolled urbanization, scarcity of natural resources, epidemics and natural disasters. Using the data from 61 meteorological stations, the geostatistical space-time analysis was performed, in which the sum-metric covariance model was the most adequate, considering the criterion of the Mean Squared Error. Thus, it was possible to prepare maps of predictions of maximum air temperatures in the state of Minas Gerais through of ordinary kriging, assuming first order stationarity of the evaluated stochastic process. It can be observed that the models of space-time geostatistics have shown to be efficient in the space-time studies of maximum air temperatures.en
dc.description.affiliationUniversidade Federal de Viçosa (UFV), MG
dc.description.affiliationDepartamento de Física Universidade Estadual Paulista (Unesp) Faculdade de Ciências, SP
dc.description.affiliationInstituto Federal do Espírito Santos (IFES, ES
dc.description.affiliationUnespDepartamento de Física Universidade Estadual Paulista (Unesp) Faculdade de Ciências, SP
dc.format.extent96-111
dc.identifierhttp://dx.doi.org/10.26848/rbgf.v12.1.p096-111
dc.identifier.citationRevista Brasileira de Geografia Fisica, v. 12, n. 1, p. 96-111, 2019.
dc.identifier.doi10.26848/rbgf.v12.1.p096-111
dc.identifier.issn1984-2295
dc.identifier.scopus2-s2.0-85100211042
dc.identifier.urihttp://hdl.handle.net/11449/245848
dc.language.isopor
dc.relation.ispartofRevista Brasileira de Geografia Fisica
dc.sourceScopus
dc.subjectCovariance
dc.subjectOrdinary Kriging
dc.subjectSpatial-temporal Data Modeling
dc.subjectVariogram
dc.titleThe Use of Space-Temporal Geostatistics in the Prediction of Maximum Air Temperatureen
dc.titleO Uso da Geoestatística Espaço-Temporal na Predição da Temperatura Máxima do Arpt
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções