Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Hadoop cluster deployment: A methodological approach

dc.contributor.authorCorreia, Ronaldo Celso Messias [UNESP]
dc.contributor.authorSpadon, Gabriel
dc.contributor.authorGomes, Pedro Henrique De Andrade [UNESP]
dc.contributor.authorEler, Danilo Medeiros [UNESP]
dc.contributor.authorGarcia, Rogério Eduardo [UNESP]
dc.contributor.authorJunior, Celso Olivete [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T17:37:24Z
dc.date.available2018-12-11T17:37:24Z
dc.date.issued2018-05-29
dc.description.abstractFor a long time, data has been treated as a general problem because it just represents fractions of an event without any relevant purpose. However, the last decade has been just about information and how to get it. Seeking meaning in data and trying to solve scalability problems, many frameworks have been developed to improve data storage and its analysis. As a framework, Hadoop was presented as a powerful tool to deal with large amounts of data. However, it still causes doubts about how to deal with its deployment and if there is any reliable method to compare the performance of distinct Hadoop clusters. This paper presents a methodology based on benchmark analysis to guide the Hadoop cluster deployment. The experiments employed The Apache Hadoop and the Hadoop distributions of Cloudera, Hortonworks, and MapR, analyzing the architectures on local and on clouding-using centralized and geographically distributed servers. The results show the methodology can be dynamically applied on a reliable comparison among different architectures. Additionally, the study suggests that the knowledge acquired can be used to improve the data analysis process by understanding the Hadoop architecture.en
dc.description.affiliationDepartamento de Matematica e Computação Sao Paulo State University-UNESP
dc.description.affiliationInstituto de Ciencias Matematicas e Computacao University of Sao Paulo-USP
dc.description.affiliationUnespDepartamento de Matematica e Computação Sao Paulo State University-UNESP
dc.identifierhttp://dx.doi.org/10.3390/info9060131
dc.identifier.citationInformation (Switzerland), v. 9, n. 6, 2018.
dc.identifier.doi10.3390/info9060131
dc.identifier.file2-s2.0-85048453375.pdf
dc.identifier.issn2078-2489
dc.identifier.lattes8031012573259361
dc.identifier.lattes2616135175972629
dc.identifier.orcid0000-0003-1248-528X
dc.identifier.scopus2-s2.0-85048453375
dc.identifier.urihttp://hdl.handle.net/11449/179948
dc.language.isoeng
dc.relation.ispartofInformation (Switzerland)
dc.relation.ispartofsjr0,222
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBenchmark methodology
dc.subjectBig Data
dc.subjectComputational models
dc.subjectHadoop
dc.titleHadoop cluster deployment: A methodological approachen
dc.typeArtigo
unesp.author.lattes8031012573259361[5]
unesp.author.lattes2616135175972629[6]
unesp.author.orcid0000-0003-1248-528X[5]
unesp.departmentMatemática e Computação - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85048453375.pdf
Tamanho:
3.03 MB
Formato:
Adobe Portable Document Format
Descrição: