Publicação:
On harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcation

dc.contributor.authorFörkotter, Monica [UNESP]
dc.contributor.authorRodrigues, Hildebrando Munhoz
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T18:55:10Z
dc.date.available2022-04-28T18:55:10Z
dc.date.issued1990-01-01
dc.description.abstractConsider the equation ü + u = g(u,p) + μf(t), where p, μ are small parameters, f is an even continuous п/m-odd-harmonic function (i.e., f(t+п/m) = -f(t), for every t in R), m≥2 and g is an odd function of u. Under certain conditions on f and g it is proved that the small 2п-periodic solutions of the above equation maintain some symmetry properties of the forcing f(t), when μ ≠ 0. Other interesting results describe the changes of the number of such solutions, as p and μ vary in a small neighborhood of the origin. As another contribution of this paper, it was proved that a central assumption which was required in the main results, is generic. The main tool used in this work is the Liapunov-Schmidt Method. © 1990, Taylor & Francis Group, LLC. All rights reserved.en
dc.description.affiliationFaculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP
dc.description.affiliationInstituto de Ciências Matemáticas de Sāo Carlos USP, Sāo Carlos, SP
dc.description.affiliationUnespFaculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP
dc.format.extent63-93
dc.identifierhttp://dx.doi.org/10.1080/00036819008839942
dc.identifier.citationApplicable Analysis, v. 37, n. 1-4, p. 63-93, 1990.
dc.identifier.doi10.1080/00036819008839942
dc.identifier.issn1563-504X
dc.identifier.issn0003-6811
dc.identifier.scopus2-s2.0-25944452785
dc.identifier.urihttp://hdl.handle.net/11449/219363
dc.language.isoeng
dc.relation.ispartofApplicable Analysis
dc.sourceScopus
dc.subjectbifurcation
dc.subjectnonlinear equations
dc.subjectodd-harmonic
dc.subjectPeriodic solutions
dc.subjectsmall solutions
dc.subjectsymmetry
dc.titleOn harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcationen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções