Publicação: On harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcation
dc.contributor.author | Förkotter, Monica [UNESP] | |
dc.contributor.author | Rodrigues, Hildebrando Munhoz | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2022-04-28T18:55:10Z | |
dc.date.available | 2022-04-28T18:55:10Z | |
dc.date.issued | 1990-01-01 | |
dc.description.abstract | Consider the equation ü + u = g(u,p) + μf(t), where p, μ are small parameters, f is an even continuous п/m-odd-harmonic function (i.e., f(t+п/m) = -f(t), for every t in R), m≥2 and g is an odd function of u. Under certain conditions on f and g it is proved that the small 2п-periodic solutions of the above equation maintain some symmetry properties of the forcing f(t), when μ ≠ 0. Other interesting results describe the changes of the number of such solutions, as p and μ vary in a small neighborhood of the origin. As another contribution of this paper, it was proved that a central assumption which was required in the main results, is generic. The main tool used in this work is the Liapunov-Schmidt Method. © 1990, Taylor & Francis Group, LLC. All rights reserved. | en |
dc.description.affiliation | Faculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP | |
dc.description.affiliation | Instituto de Ciências Matemáticas de Sāo Carlos USP, Sāo Carlos, SP | |
dc.description.affiliationUnesp | Faculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP | |
dc.format.extent | 63-93 | |
dc.identifier | http://dx.doi.org/10.1080/00036819008839942 | |
dc.identifier.citation | Applicable Analysis, v. 37, n. 1-4, p. 63-93, 1990. | |
dc.identifier.doi | 10.1080/00036819008839942 | |
dc.identifier.issn | 1563-504X | |
dc.identifier.issn | 0003-6811 | |
dc.identifier.scopus | 2-s2.0-25944452785 | |
dc.identifier.uri | http://hdl.handle.net/11449/219363 | |
dc.language.iso | eng | |
dc.relation.ispartof | Applicable Analysis | |
dc.source | Scopus | |
dc.subject | bifurcation | |
dc.subject | nonlinear equations | |
dc.subject | odd-harmonic | |
dc.subject | Periodic solutions | |
dc.subject | small solutions | |
dc.subject | symmetry | |
dc.title | On harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcation | en |
dc.type | Artigo | |
dspace.entity.type | Publication |