Strength assessment of Al-Humic and Al-Kaolin aggregates by intrusive and non-intrusive methods

dc.contributor.authorMoruzzi, Rodrigo B. [UNESP]
dc.contributor.authorda Silva, Pedro Grava [UNESP]
dc.contributor.authorSharifi, Soroosh
dc.contributor.authorCampos, Luiza C.
dc.contributor.authorGregory, John
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Birmingham
dc.contributor.institutionUniversity College London
dc.date.accessioned2019-10-06T15:34:15Z
dc.date.available2019-10-06T15:34:15Z
dc.date.issued2019-06-15
dc.description.abstractResistance to breakage is a critical property of aggregates generated in water and wastewater treatment processes. After flocculation, aggregates should ideally keep their physical characteristics (i.e. size and morphology), to result in the best performance possible by individual separation processes. The integrity of aggregates after flocculation depends upon their capacity to resist shear forces while transported through canals, passages, apertures, orifices and other hydraulic units. In this study, the strength of Al-Humic and Al-Kaolin aggregates was investigated using two macroscopic measurement techniques, based on both intrusive and non-intrusive methods, using image analysis and light scattering based equipment. Each technique generates different information which was used for obtaining three floc strength indicators, namely, strength factor (SF), local stress from the hydrodynamic disturbance (σ) and the force coefficient (γ) for two different study waters. The results showed an increasing trend for the SF of both Al-Humic and Al-Kaolin aggregates, ranging from 29.7% to 78.6% and from 33.3% to 85.2%, respectively, in response to the increase of applied shear forces during flocculation (from 20 to 120 s−1). This indicates that aggregates formed at higher shear rates are more resistant to breakage than those formed at lower rates. In these conditions, σ values were observed to range from 0.07 to 0.44 N/m2 and from 0.08 to 0.47 N/m2 for Al-Humic and Al-Kaolin, respectively. Additionally, it was found that for all studied conditions, the resistance of aggregates to shear forces was nearly the same for Al-Humic and Al-Kaolin aggregates, formed from destabilized particles using sweep coagulation. These results suggest that aggregate strength may be mainly controlled by the coagulant, emphasizing the importance of the coagulant selection in water treatment. In addition, the use of both intrusive and non-intrusive techniques helped to confirm and expand previous experiments recently reported in literature.en
dc.description.affiliationInstituto de Geociências e Ciências Exatas Univ. Estadual Paulista (UNESP), Av. 24-A, 1515, Jardim Bela Vista, Rio Claro
dc.description.affiliationPrograma de Pós-graduação em Engenharia Civil e Ambiental Univ. Estadual Paulista (UNESP), Av. 24-A, 1515, Jardim Bela Vista, Rio Claro
dc.description.affiliationDepartment of Civil Engineering University of Birmingham
dc.description.affiliationDepartment of Civil Environmental and Geomatic Engineering University College London, Gower St
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas Univ. Estadual Paulista (UNESP), Av. 24-A, 1515, Jardim Bela Vista, Rio Claro
dc.description.affiliationUnespPrograma de Pós-graduação em Engenharia Civil e Ambiental Univ. Estadual Paulista (UNESP), Av. 24-A, 1515, Jardim Bela Vista, Rio Claro
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/19195-7
dc.format.extent265-273
dc.identifierhttp://dx.doi.org/10.1016/j.seppur.2019.02.033
dc.identifier.citationSeparation and Purification Technology, v. 217, p. 265-273.
dc.identifier.doi10.1016/j.seppur.2019.02.033
dc.identifier.issn1873-3794
dc.identifier.issn1383-5866
dc.identifier.scopus2-s2.0-85061820881
dc.identifier.urihttp://hdl.handle.net/11449/187375
dc.language.isoeng
dc.relation.ispartofSeparation and Purification Technology
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAggregates
dc.subjectFloc resistance
dc.subjectFlocculation
dc.subjectImage analysis
dc.titleStrength assessment of Al-Humic and Al-Kaolin aggregates by intrusive and non-intrusive methodsen
dc.typeArtigo

Arquivos

Coleções