Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A Hybrid Approach for Breast Mass Categorization

Nenhuma Miniatura disponível

Data

2019-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Breast cancer is one of the most frequent fatal diseases among women around the world. Early diagnosis is paramount for easing such statistics, increasing the probability of successful treatment and cure. This paper proposes a hybrid approach composed of a convolutional neural network with a supervised classifier on the top capable of predicting eight specific cases of the breast tumor, being four of them malignant and four benign. The model employs the BreastNet convolution neural network to the task of mammogram images feature extraction, and it compares three distinct supervised-learning algorithms for classification purposes: (i) Optimum-Path Forest, (ii) Support Vector Machines (SVM) with Radial Basis Function, and (iii) SVM with a linear kernel. Moreover, since BreastNet is also capable of performing classification tasks, its results are further compared against the other three techniques. Experimental results demonstrate the robustness of the model, achieving 86 % of accuracy over the public LAPIMO dataset.

Descrição

Idioma

Inglês

Como citar

Lecture Notes in Computational Vision and Biomechanics, v. 34, p. 159-168.

Itens relacionados