Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A Hybrid Approach for Breast Mass Categorization

dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorSantos, Claudio
dc.contributor.authorPereira, Clayton Reginaldo [UNESP]
dc.contributor.authorAfonso, Luis Claudio Sugi
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2020-12-12T02:27:08Z
dc.date.available2020-12-12T02:27:08Z
dc.date.issued2019-01-01
dc.description.abstractBreast cancer is one of the most frequent fatal diseases among women around the world. Early diagnosis is paramount for easing such statistics, increasing the probability of successful treatment and cure. This paper proposes a hybrid approach composed of a convolutional neural network with a supervised classifier on the top capable of predicting eight specific cases of the breast tumor, being four of them malignant and four benign. The model employs the BreastNet convolution neural network to the task of mammogram images feature extraction, and it compares three distinct supervised-learning algorithms for classification purposes: (i) Optimum-Path Forest, (ii) Support Vector Machines (SVM) with Radial Basis Function, and (iii) SVM with a linear kernel. Moreover, since BreastNet is also capable of performing classification tasks, its results are further compared against the other three techniques. Experimental results demonstrate the robustness of the model, achieving 86 % of accuracy over the public LAPIMO dataset.en
dc.description.affiliationSchool of Sciences UNESP - São Paulo State University
dc.description.affiliationDepartment of Computing UFSCar - Federal University of São Carlos
dc.description.affiliationUnespSchool of Sciences UNESP - São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent159-168
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-32040-9_17
dc.identifier.citationLecture Notes in Computational Vision and Biomechanics, v. 34, p. 159-168.
dc.identifier.doi10.1007/978-3-030-32040-9_17
dc.identifier.issn2212-9413
dc.identifier.issn2212-9391
dc.identifier.scopus2-s2.0-85073171028
dc.identifier.urihttp://hdl.handle.net/11449/201220
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computational Vision and Biomechanics
dc.sourceScopus
dc.subjectBreast cancer
dc.subjectConvolutional Neural Networks
dc.subjectOptimum-path forest
dc.titleA Hybrid Approach for Breast Mass Categorizationen
dc.typeCapítulo de livro
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos