Global dynamics of stationary solutions of the extended Fisher-Kolmogorov equation
Carregando...
Data
2011-11-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
American Institute of Physics (AIP)
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper we study the fourth order differential equation d(4)u/dt(4) + q d(2)u/dt(2) + u(3) - u = 0, which arises from the study of stationary solutions of the Extended Fisher-Kolmogorov equation. Denoting x = u, y = du/dt, z = d(2)u/dt(2), v = d(3)u/dt(3) this equation becomes equivalent to the polynomial system. (x) over dot = y, (y) over dot = z, (z) over dot = v, (v) over dot = x - qz - x(3) with (x, y, z, v) is an element of R(4) and q is an element of R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on R(3). We provide the global phase portrait of these systems in the Poincare ball (i.e., in the compactification of R(3) with the sphere S(2) of the infinity). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657425]
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 11, p. 12, 2011.