Publicação: Unsupervised manifold learning for video genre retrieval
dc.contributor.author | Almeida, Jurandy | |
dc.contributor.author | Pedronette, Daniel C.G. [UNESP] | |
dc.contributor.author | Penatti, Otávio A.B. | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | SAMSUNG Research Institute | |
dc.date.accessioned | 2018-12-11T16:40:07Z | |
dc.date.available | 2018-12-11T16:40:07Z | |
dc.date.issued | 2014-01-01 | |
dc.description.abstract | This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results. | en |
dc.description.affiliation | Institute of Science and Technology Federal University of São Paulo – UNIFESP | |
dc.description.affiliation | Dept. of Statistics,Applied Mathematics and Computation São Paulo State University – UNESP | |
dc.description.affiliation | Advanced Technologies SAMSUNG Research Institute | |
dc.description.affiliationUnesp | Dept. of Statistics,Applied Mathematics and Computation São Paulo State University – UNESP | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 604-612 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8827, p. 604-612. | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-84949157291 | |
dc.identifier.uri | http://hdl.handle.net/11449/168183 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Manifold learning | |
dc.subject | Ranking methods | |
dc.subject | Video genre retrieval | |
dc.title | Unsupervised manifold learning for video genre retrieval | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication |