Publicação:
Unsupervised manifold learning for video genre retrieval

dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorPedronette, Daniel C.G. [UNESP]
dc.contributor.authorPenatti, Otávio A.B.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSAMSUNG Research Institute
dc.date.accessioned2018-12-11T16:40:07Z
dc.date.available2018-12-11T16:40:07Z
dc.date.issued2014-01-01
dc.description.abstractThis paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.en
dc.description.affiliationInstitute of Science and Technology Federal University of São Paulo – UNIFESP
dc.description.affiliationDept. of Statistics,Applied Mathematics and Computation São Paulo State University – UNESP
dc.description.affiliationAdvanced Technologies SAMSUNG Research Institute
dc.description.affiliationUnespDept. of Statistics,Applied Mathematics and Computation São Paulo State University – UNESP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent604-612
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8827, p. 604-612.
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-84949157291
dc.identifier.urihttp://hdl.handle.net/11449/168183
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectManifold learning
dc.subjectRanking methods
dc.subjectVideo genre retrieval
dc.titleUnsupervised manifold learning for video genre retrievalen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções