Micromechanics of dentin /adhesive interface in function of dentin depth: 3D finite element analysis

dc.contributor.authorAnchieta, Rodolfo Bruniera [UNESP]
dc.contributor.authorRocha, Eduardo Passos
dc.contributor.authorSundfeld, Renato Herman [UNESP]
dc.contributor.authorJunior, Manoel Martin
dc.contributor.authorGiannini, Marcelo
dc.contributor.authorReis, André Figueiredo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUningá University
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-29T07:26:18Z
dc.date.available2022-04-29T07:26:18Z
dc.date.issued2013-01-01
dc.description.abstractObjectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAG's length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion.en
dc.description.affiliationDepartment of Dental Materials and Prosthodontics, Sao Paulo State University, Araçatuba School of Dentistry -UNESP
dc.description.affiliationUningá University
dc.description.affiliationDepartment of Restorative Dentistry, Sao Paulo State University, Araçatuba School of Dentistry -UNESP
dc.description.affiliationDivision of Operative Dentistry, Piracicaba School of Dentistry, University of Campinas
dc.description.affiliationDepartment of Operative Dentistry
dc.description.affiliationUnespDepartment of Dental Materials and Prosthodontics, Sao Paulo State University, Araçatuba School of Dentistry -UNESP
dc.description.affiliationUnespDepartment of Restorative Dentistry, Sao Paulo State University, Araçatuba School of Dentistry -UNESP
dc.format.extent197-208
dc.identifier.citationClinical Dentistry Research Compendium, p. 197-208.
dc.identifier.scopus2-s2.0-84934783667
dc.identifier.urihttp://hdl.handle.net/11449/228004
dc.language.isoeng
dc.relation.ispartofClinical Dentistry Research Compendium
dc.sourceScopus
dc.subjectAdhesive
dc.subjectDentin
dc.subjectDentin depth
dc.subjectDentin tubules
dc.subjectFinite element analysis
dc.subjectHybrid layer
dc.titleMicromechanics of dentin /adhesive interface in function of dentin depth: 3D finite element analysisen
dc.typeCapítulo de livro
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatubapt
unesp.departmentMateriais odontológicos e Prótese - FOApt
unesp.departmentOdontologia Restauradora - FOApt

Arquivos