Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation

dc.contributor.advisorCarvalho, Aparecido Augusto de [UNESP]
dc.contributor.authorArcolezi, Héber Hwang
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-17T12:35:29Z
dc.date.available2019-10-17T12:35:29Z
dc.date.issued2019-08-19
dc.description.abstractIn the last few years, several studies have been carried out showing that neuromuscular electrical stimulation (NMES) can produce good therapeutic results in patients with spinal cord injury (SCI). This research introduces a new robust and intelligent control-based methodology for human lower limb rehabilitation via NMES using a continuous-time control technique named robust integral of the sign of the error (RISE). Although in the literature the RISE controller has shown good results without any fine-tuning method, a trial and error approach would quickly lead to muscle fatigue in SCI patients. Therefore, it was shown in this study that the control performance for robustly tracking a reference signal can be improved through the proposed approach by providing an intelligent tuning for each voluntary. Simulation results with a mathematical model and eight identified subjects from the literature are provided, and real experiments are performed with seven healthy and two paraplegic subjects. Besides, this research introduces the application of deep and dynamic neural networks namely the multilayer perceptron, a simple recurrent neural network, and the Long Short-Term memory architecture, to identify the nonlinear and time-varying relationship between the supplied NMES and achieved angular position. Identification results indicate good fitting to data and very low mean square error using few data for training, proving to be very prospective methods for proposing control-oriented models.en
dc.description.abstractNos últimos anos, vários estudos foram realizados mostrando que a estimulação elétrica neuromuscular (EENM) pode produzir bons resultados terapêuticos em pacientes com lesão medular (LM). Esta pesquisa introduz uma nova metodologia robusta e inteligente baseada em controle para a reabilitação de membros inferiores humanos via EENM usando uma técnica de controle de tempo contínuo chamada robust integral of the sign of the error (RISE). Embora na literatura o controlador RISE tem demonstrado bons resultados sem qualquer método de ajuste fino, uma abordagem de tentativa e erro poderia levar rapidamente à fadiga muscular em pacientes com LM. Portanto, foi mostrado nesse estudo que o desempenho do controle para rastrear com robustez um sinal de referência pode ser melhorado através da abordagem proposta, fornecendo um ajuste inteligente para cada voluntário. Resultados de simulação com um modelo matemático e oito sujeitos identificados da literatura são fornecidos, e experimentos reais são feitos com sete indivíduos saudáveis ​​e dois paraplégicos. Além disso, esta pesquisa introduz a aplicação de redes neurais profundas e dinâmicas, especificamente o perceptron multicamadas, uma rede neural recorrente simples e a arquitetura Long Short-Term Memory, para identificar a relação não-linear e variante no tempo entre a EENM fornecida e a posição angular alcançada. Os resultados de identificação indicam boa adaptação aos dados e erro quadrático médio muito baixo usando poucos dados para treinamento, provando ser métodos muito prospectivos para propor modelos orientados ao controle.pt
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.identifier.aleph000926145
dc.identifier.capes33004099080P0
dc.identifier.urihttp://hdl.handle.net/11449/190755
dc.language.isoeng
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectNeuromuscular electrical stimulationen
dc.subjectKnee joint controlen
dc.subjectRISE controlleren
dc.subjectImproved genetic algorithmen
dc.subjectRecurrent neural networksen
dc.subjectEstimulação elétrica neuromuscularpt
dc.subjectControle da articulação do joelhopt
dc.subjectControlador RISEpt
dc.subjectAlgoritmo genético melhoradopt
dc.subjectRedes neurais recorrentespt
dc.titleA novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulationen
dc.title.alternativeNova abordagem robusta e inteligente de controle para reabilitação de membros inferiores humanos via estimulação elétrica neuromuscularpt
dc.title.alternativeUn nuevo enfoque robusto e inteligente basado en control para la rehabilitación de miembros inferiores humanos a través de la estimulación eléctrica neuromusculares
dc.title.alternativeUne nouvelle approche basée sur le contrôle, robuste et intelligente, pour la réadaptation humaine des membres inférieurs par stimulation électrique neuromusculairefr
dc.typeDissertação de mestrado
unesp.advisor.lattes0250066159980825[1]
unesp.advisor.orcid0000-0001-8204-3482[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.embargoOnlinept
unesp.examinationboard.typeBanca públicapt
unesp.graduateProgramEngenharia Elétrica - FEISpt
unesp.knowledgeAreaAutomaçãopt
unesp.researchAreaEngenharia de Reabilitaçãopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
arcolezi_hh_me_ilha.pdf
Tamanho:
31.52 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
3.02 KB
Formato:
Item-specific license agreed upon to submission
Descrição: