Algumas generalizações do teorema clássico de Borsuk-Ulam

Carregando...
Imagem de Miniatura

Data

2014-02-20

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Resumo

The classic Borsuk-Ulam theorem states that if f : Sn 􀀀! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(􀀀x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X 􀀀! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property
O teorema clássico de Borsuk-Ulam afirma que se f : Sn 􀀀! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(􀀀x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X 􀀀! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam

Descrição

Palavras-chave

Topologia algebrica, Espaços topologicos, Borsuk-Ulam, Teorema de, Algebraic topology

Como citar

MORITA, Ana Maria Mathias. Algumas generalizações do teorema clássico de Borsuk-Ulam. 2014. 60 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.