Model selection for discriminative restricted boltzmann machines through meta-heuristic techniques

dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorRosa, Gustavo Henrique de [UNESP]
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorScheirer, Walter
dc.contributor.authorCox, David Daniel
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionHarvard University
dc.date.accessioned2016-03-02T13:04:27Z
dc.date.available2016-03-02T13:04:27Z
dc.date.issued2015
dc.description.abstractDiscriminative learning of Restricted Boltzmann Machines has been recently introduced as an alternative to provide a self-contained approach for both unsupervised feature learning and classification purposes. However, one of the main problems faced by researchers interested in such approach concerns with a proper selection of its parameters, which play an important role in its final performance. In this paper, we introduced some meta-heuristic techniques for this purpose, as well as we showed they can be more accurate than a random search, which is commonly used technique in several works.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, CEP 17033-360, SP, Brasil
dc.description.affiliationHarvard University, Cambridge, MA, USA
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, CEP 17033-360, SP, Brasil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.format.extent14-18
dc.identifierhttp://dx.doi.org/10.1016/j.jocs.2015.04.014
dc.identifier.citationJournal of Computational Science, v. 1, p. 1, 2015.
dc.identifier.doi10.1016/j.jocs.2015.04.014
dc.identifier.issn1877-7503
dc.identifier.lattes6027713750942689
dc.identifier.lattes9039182932747194
dc.identifier.urihttp://hdl.handle.net/11449/135791
dc.language.isoeng
dc.relation.ispartofJournal of Computational Science
dc.relation.ispartofjcr1.925
dc.relation.ispartofsjr0,509
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectDiscriminative restricted boltzmann machinesen
dc.subjectModel selectionen
dc.subjectDeep learningen
dc.titleModel selection for discriminative restricted boltzmann machines through meta-heuristic techniquesen
dc.typeArtigo
unesp.author.lattes6027713750942689[3]
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0003-4861-7061[3]
unesp.author.orcid0000-0002-6494-7514[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos