Supervised classification of irrigated area using spectral indexes from landsat-8 images with google earth engine

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Identifying irrigation areas using satellite images is a challenge that finds great potential in cloud computing solutions as the Google Earth Engine (GEE) tool, which facilitates the process of searching, filtering and manipulating large volumes of remote sensing data without the need for paid software or image downloading. The present work presents an implementation of the supervised classification of irrigated and rain-fed areas in the region of Sorriso and Lucas do Rio Verde/MT with the Classification and Regression Trees (CART) algorithm in GEE environment using bands 2-7 of the Landsat-8 and the NDVI, NDWI and SAVI indices. The accuracy of the supervised classification was 99.4% when using NDWI, NDVI and SAVI indices and 98.7% without using these indices, which were considered excellent. The average processing time, redone 10 times, was 52 seconds, considering all the source code developed from the filtering of the images to the conclusion of the classification. The developed source code is available in the appendix in order to disseminate and encourage the use of GEE for studies of spatial intelligence in irrigation and drainage due to its usability and easy manipulation.

Descrição

Idioma

Português

Como citar

IRRIGA, v. 25, n. 1, p. 160-169, 2020.

Itens relacionados

Financiadores