BUILDING ROOF BOUNDARY EXTRACTION FROM LiDAR AND IMAGE DATA BASED ON MARKOV RANDOM FIELD

dc.contributor.authorDal Poz, A. P. [UNESP]
dc.contributor.authorFernandes, V. J. M. [UNESP]
dc.contributor.authorHeipke, C.
dc.contributor.authorJacobsen, K.
dc.contributor.authorStilla, U.
dc.contributor.authorRottensteiner, F.
dc.contributor.authorYilmaz, A.
dc.contributor.authorYingYang, M.
dc.contributor.authorSkaloud, J.
dc.contributor.authorColomina, I
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:49:08Z
dc.date.available2018-11-26T17:49:08Z
dc.date.issued2017-01-01
dc.description.abstractIn this paper a method for automatic extraction of building roof boundaries is proposed, which combines LiDAR data and high-resolution aerial images. The proposed method is based on three steps. In the first step aboveground objects are extracted from LiDAR data. Initially a filtering algorithm is used to process the original LiDAR data for getting ground and non-ground points. Then, a region-growing procedure and the convex hull algorithm are sequentially used to extract polylines that represent aboveground objects from the non-ground point cloud. The second step consists in extracting corresponding LiDAR-derived aboveground objects from a high-resolution aerial image. In order to avoid searching for the interest objects over the whole image, the LiDAR-derived aboveground objects' polylines are photogrammetrically projected onto the image space and rectangular bounding boxes (sub-images) that enclose projected polylines are generated. Each sub-image is processed for extracting the polyline that represents the interest aboveground object within the selected sub-image. Last step consists in identifying polylines that represent building roof boundaries. We use the Markov Random Field (MRF) model for modelling building roof characteristics and spatial configurations. Polylines that represent building roof boundaries are found by optimizing the resulting MRF energy function using the Genetic Algorithm. Experimental results are presented and discussed in this paper.en
dc.description.affiliationSao Paulo State Univ, Dept Cartog, R Roberto Simonsen 305, Presidente Prudente, Brazil
dc.description.affiliationSao Paulo State Univ, R Roberto Simonsen 305, Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Cartog, R Roberto Simonsen 305, Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, R Roberto Simonsen 305, Presidente Prudente, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/13138-0
dc.description.sponsorshipIdFAPESP: 2012/22332-2
dc.description.sponsorshipIdCNPq: 306842/2013-0
dc.format.extent339-344
dc.identifierhttp://dx.doi.org/10.5194/isprs-archives-XLII-1-W1-339-2017
dc.identifier.citationIsprs Hannover Workshop: Hrigi 17 - Cmrt 17 - Isa 17 - Eurocow 17. Gottingen: Copernicus Gesellschaft Mbh, v. 42-1, n. W1, p. 339-344, 2017.
dc.identifier.doi10.5194/isprs-archives-XLII-1-W1-339-2017
dc.identifier.fileWOS000430221300049.pdf
dc.identifier.issn2194-9034
dc.identifier.urihttp://hdl.handle.net/11449/164108
dc.identifier.wosWOS:000430221300049
dc.language.isoeng
dc.publisherCopernicus Gesellschaft Mbh
dc.relation.ispartofIsprs Hannover Workshop: Hrigi 17 - Cmrt 17 - Isa 17 - Eurocow 17
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMarkov Random Field
dc.subjectLiDAR
dc.subjectAerial images
dc.subjectBuilding roof boundary
dc.titleBUILDING ROOF BOUNDARY EXTRACTION FROM LiDAR AND IMAGE DATA BASED ON MARKOV RANDOM FIELDen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderCopernicus Gesellschaft Mbh
unesp.author.lattes4791496159878691[1]
unesp.author.orcid0000-0002-2534-1229[1]
unesp.departmentCartografia - FCTpt
unesp.departmentEstatística - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000430221300049.pdf
Tamanho:
903.2 KB
Formato:
Adobe Portable Document Format
Descrição: