Aplicação do método de quantis no estudo e diagnóstico do Transtorno do Espectro Autista através de sinais de EEG

dc.contributor.advisorCamparanho, Andriana Susana Lopes de Oliveira [UNESP]
dc.contributor.authorMaximo, Mariane Vieira
dc.date.accessioned2024-05-07T12:09:43Z
dc.date.available2024-05-07T12:09:43Z
dc.date.issued2024-02-25
dc.description.abstractAutism Spectrum Disorder (ASD) is a complex condition that affects neurodevelopment, involving areas such as social behavior, communication, and language. Due to its variability of symptoms, diagnosing ASD is challenging and prone to errors, potentially significantly affecting short and long-term quality of life. Early identification and effective therapeutic interventions can improve prognosis. Electroencephalography (EEG), a technique that records brain electrical activity, is a valuable tool for investigating ASD. In research, various computational techniques for analyzing EEG signals have been explored in the literature to automatically detect ASD, such as Entropy, Wavelet Transform, Independent Component Analysis (ICA), among others. However, new studies and methods are needed to deepen understanding of the underlying mechanisms of this condition. In this study, we employed the quantile method, an innovative approach, to analyze EEG time series from patients with ASD and neurotypical individuals from two distinct databases. Our goal was to perform a comparison between the results obtained. Although novel for ASD, the quantile method has already demonstrated efficacy in classifying other conditions, such as Epilepsy and Alzheimer’s disease. Mapping using the quantile method, combined with topological descrip-tors, proved effective in classifying ASD. The use of combinations of topological descriptors in classifiers, such as SVM (Support Vector Machine), with three different descriptors, also demonstrated efficacy in both databases analyzed in this study. Additionally, we identified two brain regions of interest: the occipital lobe and a specific electrode in the frontal lobe. Analysis of the collaboration of brain waves in identifying the disorder revealed that alpha frequency waves yielded the best results in differentiating groups for both databases, further enhancing understanding of the mechanisms underlying ASD. In summary, this study demonstrates the promising application of time series analysis techniques, such as the quantile method, in ASD investigation through EEG. These approaches have the potential to significantly contribute to a deeper understanding of this complex condition and to the development of more accurate diagnostic methods and more effective therapeutic interventions.en
dc.description.abstractOTranstorno do Espectro Autista (TEA) é uma condição complexa que afeta o neurodesenvolvimento, envolvendo áreas como comportamento social, comunicação e linguagem. Devido à sua variabilidade de sintomas, o diagnóstico do TEA é desafiador e propenso a erros, podendo afetar significativamente a qualidade de vida a curto e longo prazo. A identificação precoce e intervenções terapêuticas eficazes podem melhorar o seu prognóstico. A eletroencefalografia (EEG), uma técnica que registra a atividade elétrica cerebral, é uma ferramenta valiosa para investigar o TEA. Diversas técnicas computacionais de análise de sinais de EEG têm sido exploradas na literatura para detectar automaticamente o TEA, tais como a Entropia, a Transformada de Wavelet, a Análise de Componentes Independentes (ICA), entre outras. No entanto, novos estudos e métodos são necessários para aprofundar a compreensão dos mecanismos subjacentes a essa condição. Neste estudo, empregamos o método de quantis, uma abordagem inovadora, para analisar séries temporais de EEG de pacientes com TEA e indivíduos neurotípicos de duas bases de dados distintas. Nosso objetivo foi realizar uma comparação entre os resultados obtidos para ambas as bases de dados após o mapeamento. Embora seja uma novidade para o TEA, o método de quantis já demonstrou eficácia na classificação de outras condições, como Epilepsia e Alzheimer. O mapeamento usando o método de quantis, combinado com caracterizadores topológicos, mostrouse eficaz na classificação do TEA. A utilização de combinações de caracterizadores topológicos em classificadores, como SVM (Support Vector Machine), com três caracterizadores diferentes, também demonstrou eficácia em ambas as bases de dados analisadas neste estudo. Além disso, identificamos duas regiões cerebrais de interesse: o lobo occipital e um eletrodo específico no lobo frontal. A análise da colaboração das ondas cerebrais na identificação do transtorno revelou que as ondas de frequência α apresentaram os melhores resultados na diferenciação dos grupos para ambas as bases de dados, fortalecendo ainda mais a compreensão dos mecanismos subjacentes ao TEA. Em resumo, este estudo demonstra a promissora aplicação de técnicas de análise de séries temporais, como o método de quantis, na investigação do TEA por meio de EEG. Essas abordagens têm o potencial de contribuir significativamente para uma compreensão mais profunda dessa complexa condição e para o desenvolvimento de métodos de diagnóstico mais precisos.pt
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.identifier.urihttps://hdl.handle.net/11449/255506
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectTranstorno do espectro autistapt
dc.subjectRedes complexaspt
dc.subjectQuantispt
dc.titleAplicação do método de quantis no estudo e diagnóstico do Transtorno do Espectro Autista através de sinais de EEG
dc.title.alternativeApplication of the quantile method in the study and diagnosis of Autism Spectrum Disorder through EEG signalsen
dc.typeDissertação de mestrado
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.embargoOnline
unesp.examinationboard.typeBanca pública
unesp.graduateProgramBiometria - IBB 33004064083P2
unesp.knowledgeAreaOutra
unesp.researchAreaBiometria

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
maximo_mv_me_bot.pdf
Tamanho:
6.41 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.14 KB
Formato:
Item-specific license agreed upon to submission
Descrição: