Multi-label semi-supervised classification through optimum-path forest

dc.contributor.authorAmorim, Willian P.
dc.contributor.authorFalcao, Alexandre X.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:55:36Z
dc.date.available2018-11-26T17:55:36Z
dc.date.issued2018-10-01
dc.description.abstractMulti-label classification consists of assigning one or multiple classes to each sample in a given dataset. However, the project of a multi-label classifier is usually limited to a small number of supervised samples as compared to the number of all possible label combinations. This scenario favors semi-supervised learning methods, which can cope with the absence of supervised samples by adding unsupervised ones to the training set. Recently, we proposed a semi-supervised learning method based on optimum connectivity for single-label classification. In this work, we extend it for multi-label classification with considerable effectiveness gain. After a single-label data transformation, the method propagates labels from supervised to unsupervised samples, as in the original approach, by assuming that samples from the same class are more closely connected through sequences of nearby samples than samples from distinct classes. Given that the procedure is more reliable in high-density regions of the feature space, an additional step repropagates labels from the maxima of a probability density function to correct possible labeling errors from the previous step. Finally, the data transformation is reversed to obtain multiple labels per sample. The new approach is experimentally validated on several datasets in comparison with state-of-the-art methods. (C) 2018 Elsevier Inc. All rights reserved.en
dc.description.affiliationUniv Fed Mato Grosso do Sul, Inst Comp, Campo Grande, MS, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundect-MS
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 303673/2010-9
dc.description.sponsorshipIdCNPq: 479070/2013-0
dc.description.sponsorshipIdCNPq: 302970/2014-2
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.format.extent86-104
dc.identifierhttp://dx.doi.org/10.1016/j.ins.2018.06.067
dc.identifier.citationInformation Sciences. New York: Elsevier Science Inc, v. 465, p. 86-104, 2018.
dc.identifier.doi10.1016/j.ins.2018.06.067
dc.identifier.fileWOS000445713900006.pdf
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/11449/164684
dc.identifier.wosWOS:000445713900006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInformation Sciences
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSemi-supervised learning
dc.subjectMulti-label assignment
dc.subjectOptimum-path forest classifiers
dc.titleMulti-label semi-supervised classification through optimum-path foresten
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000445713900006.pdf
Tamanho:
1.78 MB
Formato:
Adobe Portable Document Format
Descrição: