Multi-label semi-supervised classification through optimum-path forest
dc.contributor.author | Amorim, Willian P. | |
dc.contributor.author | Falcao, Alexandre X. | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:55:36Z | |
dc.date.available | 2018-11-26T17:55:36Z | |
dc.date.issued | 2018-10-01 | |
dc.description.abstract | Multi-label classification consists of assigning one or multiple classes to each sample in a given dataset. However, the project of a multi-label classifier is usually limited to a small number of supervised samples as compared to the number of all possible label combinations. This scenario favors semi-supervised learning methods, which can cope with the absence of supervised samples by adding unsupervised ones to the training set. Recently, we proposed a semi-supervised learning method based on optimum connectivity for single-label classification. In this work, we extend it for multi-label classification with considerable effectiveness gain. After a single-label data transformation, the method propagates labels from supervised to unsupervised samples, as in the original approach, by assuming that samples from the same class are more closely connected through sequences of nearby samples than samples from distinct classes. Given that the procedure is more reliable in high-density regions of the feature space, an additional step repropagates labels from the maxima of a probability density function to correct possible labeling errors from the previous step. Finally, the data transformation is reversed to obtain multiple labels per sample. The new approach is experimentally validated on several datasets in comparison with state-of-the-art methods. (C) 2018 Elsevier Inc. All rights reserved. | en |
dc.description.affiliation | Univ Fed Mato Grosso do Sul, Inst Comp, Campo Grande, MS, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.sponsorship | Fundect-MS | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 303673/2010-9 | |
dc.description.sponsorshipId | CNPq: 479070/2013-0 | |
dc.description.sponsorshipId | CNPq: 302970/2014-2 | |
dc.description.sponsorshipId | CNPq: 303182/2011-3 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | FAPESP: 2013/20387-7 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.format.extent | 86-104 | |
dc.identifier | http://dx.doi.org/10.1016/j.ins.2018.06.067 | |
dc.identifier.citation | Information Sciences. New York: Elsevier Science Inc, v. 465, p. 86-104, 2018. | |
dc.identifier.doi | 10.1016/j.ins.2018.06.067 | |
dc.identifier.file | WOS000445713900006.pdf | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.uri | http://hdl.handle.net/11449/164684 | |
dc.identifier.wos | WOS:000445713900006 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Information Sciences | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Semi-supervised learning | |
dc.subject | Multi-label assignment | |
dc.subject | Optimum-path forest classifiers | |
dc.title | Multi-label semi-supervised classification through optimum-path forest | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000445713900006.pdf
- Tamanho:
- 1.78 MB
- Formato:
- Adobe Portable Document Format
- Descrição: