Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology

Nenhuma Miniatura disponível






Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume




Direito de acesso

Acesso abertoAcesso Aberto


The mapping of soil attributes provides support to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production. Landsat 5 Thematic Mapper (TM) images are often used to estimate a given soil attribute (i.e., clay), but have the potential to model many other attributes, providing input for soil mapping applications. In this paper, we aim to evaluate a Bare Soil Composite Image (BSCI) from the state of São Paulo, Brazil, calculated from a multi-temporal dataset, and study its relationship with topsoil properties, such as soil class and geology. The method presented detects bare soil in satellite images in a time series of 16 years, based on Landsat 5 TM observations. The compilation derived a BSCI for the agricultural sites (242,000 hectare area) characterized by very complex geology. Soil properties were analyzed to calibrate prediction models using 740 soil samples (0-20 cm) collected of the area. Partial least squares regression (PLSR) based on the BSCI spectral dataset was performed to quantify soil attributes. The method identified that a single image represents 7 to 20% of bare soil while the compilation of the multi-temporal dataset increases to 53%. Clay content had the best soil attribute prediction estimates (R2 = 0.75, root mean square error (RMSE) = 89.84 g kg-1, and accuracy = 74%). Soil organic matter, cation exchange capacity and sandy soils also achieved moderate predictions. The BSCI demonstrates a strong relationship with legacy geological maps detecting variations in soils. From a single composite image, it was possible to use spectroscopy to evaluate several environmental parameters. This technique could greatly improve soil mapping and consequently aid several applications, such as land use planning, environmental monitoring, and prevention of land degradation, updating legacy surveys and digital soil mapping.




Como citar

Remote Sensing, v. 10, n. 10, 2018.

Itens relacionados