Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
Nenhuma Miniatura disponível
Data
2016-08-11
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Capítulo de livro
Direito de acesso
Resumo
Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.
Descrição
Idioma
Inglês
Como citar
Bio-Inspired Computation and Applications in Image Processing, p. 25-45.