Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization

Nenhuma Miniatura disponível

Data

2016-08-11

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.

Descrição

Idioma

Inglês

Como citar

Bio-Inspired Computation and Applications in Image Processing, p. 25-45.

Itens relacionados

Financiadores

Coleções