Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization

Nenhuma Miniatura disponível
Data
2016-08-11
Autores
Fernandes, S. E.N.
Setoue, K. K.F. [UNESP]
Adeli, H.
Papa, J. P. [UNESP]
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.
Descrição
Palavras-chave
Enhanced probabilistic neural networks, Metaheuristic, Neural networks, Optimization, Pattern recognition
Como citar
Bio-Inspired Computation and Applications in Image Processing, p. 25-45.
Coleções