Publicação: On the determination of epsilon during discriminative GMM training
dc.contributor.author | Guido, Rodrigo Capobianco [UNESP] | |
dc.contributor.author | Chen, Shi-Huang [UNESP] | |
dc.contributor.author | Junior, Sylvio Barbon [UNESP] | |
dc.contributor.author | Souza, Leonardo Mendes [UNESP] | |
dc.contributor.author | Vieira, Lucimar Sasso [UNESP] | |
dc.contributor.author | Rodrigues, Luciene Cavalcanti [UNESP] | |
dc.contributor.author | Escola, Joao Paulo Lemos [UNESP] | |
dc.contributor.author | Zulato, Paulo Ricardo Franchi [UNESP] | |
dc.contributor.author | Lacerda, Michel Alves [UNESP] | |
dc.contributor.author | Ribeiro, Jussara [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Shu-Te University | |
dc.date.accessioned | 2014-05-27T11:25:20Z | |
dc.date.available | 2014-05-27T11:25:20Z | |
dc.date.issued | 2010-12-01 | |
dc.description.abstract | Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE. | en |
dc.description.affiliation | SpeechLab. FFI, Institute of Physics at São Carlos University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP | |
dc.description.affiliation | DCCE/IBILCE/UNESP São Paulo State University, Rua Cristovão Colombo 2265, São José do Rio Preto, SP | |
dc.description.affiliation | Department of Computer Science and Information Engineering Shu-Te University, N.59, Hengshan Rd., Yanchao, Kaohsiung County 82445 | |
dc.description.affiliationUnesp | DCCE/IBILCE/UNESP São Paulo State University, Rua Cristovão Colombo 2265, São José do Rio Preto, SP | |
dc.format.extent | 362-364 | |
dc.identifier | http://dx.doi.org/10.1109/ISM.2010.66 | |
dc.identifier.citation | Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364. | |
dc.identifier.doi | 10.1109/ISM.2010.66 | |
dc.identifier.lattes | 6542086226808067 | |
dc.identifier.orcid | 0000-0002-0924-8024 | |
dc.identifier.scopus | 2-s2.0-79951728004 | |
dc.identifier.uri | http://hdl.handle.net/11449/72054 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Discriminative training of Gaussian Mixture Models (GMMs) | |
dc.subject | Markov Models | |
dc.subject | Speaker identification | |
dc.subject | Speech recognition | |
dc.subject | Discriminative training | |
dc.subject | Gaussian mixture models | |
dc.subject | Gradient descent algorithms | |
dc.subject | Gradient Descent method | |
dc.subject | Iteration step | |
dc.subject | Newton-Raphson iterative method | |
dc.subject | Second orders | |
dc.subject | Speaker recognition | |
dc.subject | Gaussian distribution | |
dc.subject | Iterative methods | |
dc.subject | Loudspeakers | |
dc.subject | Markov processes | |
dc.title | On the determination of epsilon during discriminative GMM training | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6542086226808067[1] | |
unesp.author.orcid | 0000-0002-0924-8024[1] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |