A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines

dc.contributor.authorPassos, Leandro Aparecido
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:30:44Z
dc.date.available2021-06-25T12:30:44Z
dc.date.issued2020-12-01
dc.description.abstractDeep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.description.sponsorshipIdCAPES: 001
dc.format.extent12
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2019.105717
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.
dc.identifier.doi10.1016/j.asoc.2019.105717
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/11449/209831
dc.identifier.wosWOS:000603367700004
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Soft Computing
dc.sourceWeb of Science
dc.subjectDeep Boltzmann Machine
dc.subjectMeta-heuristic optimization
dc.subjectMachine learning
dc.titleA metaheuristic-driven approach to fine-tune Deep Boltzmann Machinesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.orcid0000-0002-6494-7514[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos