A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
dc.contributor.author | Passos, Leandro Aparecido | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T12:30:44Z | |
dc.date.available | 2021-06-25T12:30:44Z | |
dc.date.issued | 2020-12-01 | |
dc.description.abstract | Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FUNDUNESP: 2597.2017 | |
dc.description.sponsorshipId | CAPES: 001 | |
dc.format.extent | 12 | |
dc.identifier | http://dx.doi.org/10.1016/j.asoc.2019.105717 | |
dc.identifier.citation | Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020. | |
dc.identifier.doi | 10.1016/j.asoc.2019.105717 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.uri | http://hdl.handle.net/11449/209831 | |
dc.identifier.wos | WOS:000603367700004 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Applied Soft Computing | |
dc.source | Web of Science | |
dc.subject | Deep Boltzmann Machine | |
dc.subject | Meta-heuristic optimization | |
dc.subject | Machine learning | |
dc.title | A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.author.orcid | 0000-0002-6494-7514[2] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |