Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants

dc.contributor.authorCosta, Raphael C.
dc.contributor.authorNagay, Bruna E.
dc.contributor.authorDini, Caroline
dc.contributor.authorBorges, Maria H.R.
dc.contributor.authorMiranda, Luís F.B.
dc.contributor.authorCordeiro, Jairo M.
dc.contributor.authorSouza, Joāo G.S.
dc.contributor.authorSukotjo, Cortino
dc.contributor.authorCruz, Nilson C. [UNESP]
dc.contributor.authorBarão, Valentim A.R.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionCentro Universitário das Faculdades Associadas de Ensino (UNIFAE)
dc.contributor.institutionGuarulhos University
dc.contributor.institutionDentistry Science School (Faculdade de Ciências Odontológicas - FCO)
dc.contributor.institutionUniversity of Illinois at Chicago College of Dentistry
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:38:27Z
dc.date.available2023-07-29T12:38:27Z
dc.date.issued2023-01-01
dc.description.abstractPlasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the ‘finish line’ in the race for antimicrobial implant surfaces.en
dc.description.affiliationDepartment of Prosthodontics and Periodontology Piracicaba Dental School University of Campinas (UNICAMP), Piracicaba
dc.description.affiliationDepartment of Dentistry Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista
dc.description.affiliationDental Research Division Guarulhos University, Guarulhos
dc.description.affiliationDentistry Science School (Faculdade de Ciências Odontológicas - FCO), Minas Gerais
dc.description.affiliationDepartment of Restorative Dentistry University of Illinois at Chicago College of Dentistry
dc.description.affiliationLaboratory of Technological Plasmas Institute of Science and Technology Sāo Paulo State University (UNESP), Sorocaba
dc.description.affiliationUnespLaboratory of Technological Plasmas Institute of Science and Technology Sāo Paulo State University (UNESP), Sorocaba
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPESP: 2019/17238-6
dc.description.sponsorshipIdFAPESP: 2020/05231-4
dc.description.sponsorshipIdFAPESP: 2020/05234-3
dc.description.sponsorshipIdFAPESP: 2020/10436-4
dc.description.sponsorshipIdCNPq: 307471/2021-7
dc.identifierhttp://dx.doi.org/10.1016/j.cis.2022.102805
dc.identifier.citationAdvances in Colloid and Interface Science, v. 311.
dc.identifier.doi10.1016/j.cis.2022.102805
dc.identifier.issn0001-8686
dc.identifier.scopus2-s2.0-85142315171
dc.identifier.urihttp://hdl.handle.net/11449/246345
dc.language.isoeng
dc.relation.ispartofAdvances in Colloid and Interface Science
dc.sourceScopus
dc.subjectAntibacterial activity
dc.subjectBiofilm
dc.subjectImplants
dc.subjectPlasma electrolytic oxidation
dc.subjectTitanium
dc.titleThe race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implantsen
dc.typeResenha

Arquivos

Coleções