Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Errata
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
An analytical description of the convergence to the stationary state in period doubling bifurcations for a family of one-dimensional logistic-like mappings is made. As reported in [1], at a bifurcation point, the convergence to the fixed point is described by a scaling function with well defined critical exponents. Near the bifurcation, the convergence is characterized by an exponential decay with the relaxation time given by a power law of μ=R - Rc where Rc is the bifurcation parameter. We found here the exponents α, β, z and δ analytically, confirming our numerical simulations shown in [1].
Descrição
Palavras-chave
Critical exponents, Homogeneous function, Scaling law
Idioma
Inglês
Citação
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 379, n. 30-31, p. 1796-1798, 2015.




