Publicação:
Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling

dc.contributor.authorGemini-Piperni, Sara
dc.contributor.authorMilani, Renato
dc.contributor.authorBertazzo, Sergio
dc.contributor.authorPeppelenbosch, Maikel
dc.contributor.authorTakamori, Esther R. [UNESP]
dc.contributor.authorGranjeiro, Jose Mauro
dc.contributor.authorFerreira, Carmen V.
dc.contributor.authorTeti, Anna
dc.contributor.authorZambuzzi, Willian
dc.contributor.institutionUniv Aquila
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniv London Imperial Coll Sci Technol & Med
dc.contributor.institutionUniv Med Ctr Rotterdam
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionDiretoria Programas DIPRO Bioengn
dc.date.accessioned2015-03-18T15:52:32Z
dc.date.available2015-03-18T15:52:32Z
dc.date.issued2014-09-01
dc.description.abstractIn degenerative diseases or lesions, bone tissue replacement and regeneration are important clinical goals. The most used bone substitutes today are hydroxyapatite (HA) scaffolds. These scaffolds, developed over the last few decades, present high porosity and good osteointegration, but haven't completely solved issues related to bone defects. Moreover, the exact intracellular mechanisms involved in the response to HA have yet to be addressed. This prompted us to investigate the protein networks responsible for signal transduction during early osteoblast adhesion on synthetic HA scaffolds. By performing a global kinase activity assay, we showed that there is a specific molecular machinery responding to HA contact, immediately triggering pathways leading to cytoskeleton rearrangement due to activation of Adducin 1 (ADD1), protein kinase A (PKA), protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Moreover, we found a significantly increased phosphorylation of the activating site Ser-421 in histone deacetylase 1 (HDAC1), a substrate of Cyclin-Dependent Kinase 5 (CDK5). These phosphorylation events are hallmarks of osteoblast differentiation, pointing to HA surfaces ability to promote differentiation. We also found that AKT was kept active, suggesting the maintenance of survival pathways. Interestingly, though, the substrate sequence of CDK5 also presented higher phosphorylation levels when compared to control conditions. To our knowledge, this kinase has never before been related to osteoblast biology, opening a new avenue of investigation for novel pathways involved in this matter. These results suggest that HA triggers a specific intracellular signal transduction cascade during early osteoblast adhesion, activating proteins involved with cytoskeleton rearrangement, and induction of osteoblast differentiation. (c) 2014 Wiley Periodicals, Inc.en
dc.description.affiliationUniv Aquila, Dept Biotechnol & Appl Clin Sci, I-67100 Laquila, Italy
dc.description.affiliationUniv Estadual Campinas UNICAMP, Inst Biol, Dept Bioquim, Campinas, SP, Brazil
dc.description.affiliationUniv London Imperial Coll Sci Technol & Med, Dept Mat, London, England
dc.description.affiliationUniv Med Ctr Rotterdam, Erasmus MC, Dept Gastroenterol & Hepatol, Rotterdam, Netherlands
dc.description.affiliationUniv Estadual Paulista, Dept Chem & Biochem, Biosci Inst, Lab Bioensaios & Dinam Celular, Sao Paulo, Brazil
dc.description.affiliationDiretoria Programas DIPRO Bioengn, Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Xerem, RJ, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Chem & Biochem, Biosci Inst, Lab Bioensaios & Dinam Celular, Sao Paulo, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipMarie Curie International Research Staff Exchange Scheme Fellowship
dc.description.sponsorshipRosetrees Trust and the Junior Research Fellowship scheme at Imperial College London
dc.description.sponsorshipIdMarie Curie International Research Staff Exchange Scheme FellowshipPIRSES-GA-2011-295181
dc.format.extent1900-1905
dc.identifierhttp://dx.doi.org/10.1002/bit.25246
dc.identifier.citationBiotechnology And Bioengineering. Hoboken: Wiley-blackwell, v. 111, n. 9, p. 1900-1905, 2014.
dc.identifier.doi10.1002/bit.25246
dc.identifier.issn0006-3592
dc.identifier.urihttp://hdl.handle.net/11449/116179
dc.identifier.wosWOS:000341236100021
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofBiotechnology And Bioengineering
dc.relation.ispartofjcr3.952
dc.relation.ispartofsjr1,372
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectbioengineeringen
dc.subjecthydroxyapatiteen
dc.subjectosteoblasten
dc.subjectsignal transductionen
dc.subjectkinome profileen
dc.subjectpeptide arrayen
dc.subjectbiotechnologyen
dc.titleKinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signalingen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentQuímica e Bioquímica - IBBpt

Arquivos