Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Structural evidence for a fatty acid-independent myotoxic mechanism for a phospholipase A2-like toxin

Nenhuma Miniatura disponível

Data

2018-03-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The myotoxic mechanism for PLA2-like toxins has been proposed recently to be initiated by an allosteric change induced by a fatty acid binding to the protein, leading to the alignment of the membrane docking site (MDoS) and membrane disrupting site (MDiS). Previous structural studies performed by us demonstrated that MjTX-II, a PLA2-like toxin isolated from Bothrops moojeni, presents a different mode of ligand-interaction caused by natural amino acid substitutions and an insertion. Herein, we present four crystal structures of MjTX-II, in its apo state and complexed with fatty acids of different lengths. Analyses of these structures revealed slightly different oligomeric conformations but with both MDoSs in an arrangement that resembles an active-state PLA2-like structure. To explore the structural transitions between apo protein and fatty-acid complexes, we performed Normal Mode Molecular Dynamics simulations, revealing that oligomeric conformations of MjTX-II/fatty acid complexes may be reached in solution by the apo structure. Similar simulations with typical PLA2-like structures demonstrated that this transition is not possible without the presence of fatty acids. Thus, we hypothesize that MjTX-II does not require fatty acids to be active, although these ligands may eventually help in its stabilization by the formation of hydrogen bonds. Therefore, these results complement previous findings for MjTX-II and help us understand its particular ligand-binding properties and, more importantly, its particular mechanism of action, with a possible impact on the design of structure-based inhibitors for PLA2-like toxins in general.

Descrição

Idioma

Inglês

Como citar

Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1866, n. 3, p. 473-481, 2018.

Itens relacionados

Coleções