Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae)


B chromosomes constitute a heterogeneous mixture of genomic parasites that are sometimes derived intraspecifically from the standard genome of the host species, but result from interspecific hybridization in other cases. The mode of origin determines the DNA content, with the B chromosomes showing high similarity with the A genome in the first case, but presenting higher similarity with a different species in the second. The characid fish Moenkhausia sanctaefilomenae harbours highly invasive B chromosomes, which are present in all populations analyzed to date in the Parana and Tiete rivers. To investigate the origin of these B chromosomes, we analyzed two natural populations: one carrying B chromosomes and the other lacking them, using a combination of molecular cytogenetic techniques, nucleotide sequence analysis and high-throughput sequencing (Illumina HiSeq2000). Our results showed that i) B chromosomes have not yet reached the Paranapanema River basin; ii) B chromosomes are mitotically unstable; iii) there are two types of B chromosomes, the most frequent of which is lightly C-banded (similar to euchromatin in A chromosomes) (B-1), while the other is darkly C-banded (heterochromatin-like) (B-2); iv) the two B types contain the same tandem repeat DNA sequences (18S ribosomal DNA, H3 histone genes, MS3 and MS7 satellite DNA), with a higher content of 18S rDNA in the heterochromatic variant; v) all of these repetitive DNAs are present together only in the paracentromeric region of autosome pair no. 6, suggesting that the B chromosomes are derived from this A chromosome; vi) the two B chromosome variants show MS3 sequences that are highly divergent from each other and from the 0B genome, although the B-2-derived sequences exhibit higher similarity with the 0B genome (this suggests an independent origin of the two B variants, with the less frequent, B-2 type presumably being younger); and vii) the dN/dS ratio for the H3.2 histone gene is almost 4-6 times higher for B chromosomes than for A chromosome sequences, suggesting that purifying selection is relaxed for the DNA sequences located on the B chromosomes, presumably because they are mostly inactive.



Como citar

Plos One. San Francisco: Public Library Science, v. 11, n. 3, 20 p., 2016.