Nodal solutions of an NLS equation concentrating on lower dimensional spheres
Carregando...
Arquivos
Data
2015-12-26
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
In this work we deal with the following nonlinear Schrödinger equation: {−<sup>ϵ2</sup>Δu+V(x)u=f(u)in <sup>RN</sup>u∈<sup>H1</sup>(<sup>RN</sup>),(Formula presented.) where N≥3, f is a subcritical power-type nonlinearity and V is a positive potential satisfying a local condition. We prove the existence and concentration of nodal solutions which concentrate around a k-dimensional sphere of R<sup>N</sup>, where (Formula presented.). The radius of such a sphere is related with the local minimum of a function which takes into account the potential V. Variational methods are used together with the penalization technique in order to overcome the lack of compactness.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Boundary Value Problems, v. 2015, n. 1, 2015.