Reply to 'Lifshitz-point critical behaviour to O(εL 2)'

dc.contributor.authorAlbuquerque, Luiz C. de [UNESP]
dc.contributor.authorLeite, Marcelo M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Tecnológico de Aeronáutica (ITA)
dc.date.accessioned2014-05-27T11:20:24Z
dc.date.available2014-05-27T11:20:24Z
dc.date.issued2002-02-22
dc.description.abstractWe reply to recent comment by Diehl and Shpot (2001J. Phys.A: Math. Gen. 34 9101) criticizing our paper (Albuquerque L C and Leite M M 2001J. Phys. A: Math. Gen. 34 L327). We show that the approximation we use for evaluating higher loop integrals is consistent with homogeneity. A new renormalization group approach is presented in order to compare the two methods with high-precision numerical data concerning the uniaxial case. We stress that isotropic behaviour cannot be obtained from anisotropic behaviour.en
dc.description.affiliationFac. Tecn. de Sao Paulo-FATEC/SP CEETEPS UNESP, Praça Fernando Prestes, 30, 01124-060 São Paulo, SP
dc.description.affiliationDepartamento de Física, Inst. Tecn. de Aeronáutica Centro Técnico Aeroespacial, 12228-900 Sao Jose dos Campos, SP
dc.description.affiliationUnespFac. Tecn. de Sao Paulo-FATEC/SP CEETEPS UNESP, Praça Fernando Prestes, 30, 01124-060 São Paulo, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2000/03277-3
dc.description.sponsorshipIdFAPESP: 2000/06572-6
dc.format.extent1807-1812
dc.identifier.citationJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 35, n. 7, p. 1807-1812, 2002.
dc.identifier.doi10.1088/0305-4470/35/7/402
dc.identifier.issn0305-4470
dc.identifier.scopus2-s2.0-0043009739
dc.identifier.urihttp://hdl.handle.net/11449/130395
dc.identifier.wosWOS:000174308200027
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Physics A: Mathematical and General
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleReply to 'Lifshitz-point critical behaviour to O(εL 2)'en
dc.typeCarta
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd

Arquivos

Coleções