Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Fuzzy Mapping of Climate Favorability for the Cultivation of Conilon Coffee in the State of Bahia, Brazil

dc.contributor.authorMedauar, Caique Carvalho
dc.contributor.authorSilva, Samuel De Assis
dc.contributor.authorGalvao, Icaro Monteiro [UNESP]
dc.contributor.authorFranco, Lais Barreto
dc.contributor.authorCarvalho, Luis Carlos Cirilo
dc.contributor.institutionUniv Estadual Santa Cruz
dc.contributor.institutionUniversidade Federal do Espírito Santo (UFES)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionRural Fed Univ Pernambuco
dc.date.accessioned2021-06-25T11:47:30Z
dc.date.available2021-06-25T11:47:30Z
dc.date.issued2021-01-03
dc.description.abstractThe aim of the present study was to construct agroclimatic zoning for the conilon coffee crop in the state of Bahia, Brazil, using fuzzy logic. Historical data series on rainfall, mean air temperature, and relative air humidity were used. Analyses were carried out considering the mean values of the accumulated variables for each month in the historical series. The data were subjected to geostatistical analysis to verify and quantify the existence of spatial dependence between the values of the studied variables. Subsequently, maps with representations of the monthly means of the variables were subjected to continual classification using fuzzy mapping to identify suitable areas and areas of climate favorability for the implantation of conilon coffee in the state of Bahia. Bahia presents great spatial variability in regard to suitability for conilon coffee cultivation, with highly favorable areas, but no totally unsuitable region. The south and extreme south of Bahia were the regions with the lowest temporal-spatial variability for climate favorability for the development of conilon coffee trees, these being the most suitable regions for this crop. The zoning through fuzzy logic assisted in decision-making on which regions of the state had the highest suitability for crop implantation.en
dc.description.affiliationUniv Estadual Santa Cruz, Postgrad Plant Prod, Salvador, Brazil
dc.description.affiliationUniv Fed Espirito Santo, Dept Rural Engn, Alegre, Brazil
dc.description.affiliationState Univ Julio De Mesquita Filho, Postgrad Agron Irrigat & Drainage, Botucatu, SP, Brazil
dc.description.affiliationRural Fed Univ Pernambuco, Postgrad Agr Engn, Pernambuco, Brazil
dc.description.affiliationUnespState Univ Julio De Mesquita Filho, Postgrad Agron Irrigat & Drainage, Botucatu, SP, Brazil
dc.format.extent205-217
dc.identifierhttp://dx.doi.org/10.1080/15538362.2020.1864698
dc.identifier.citationInternational Journal Of Fruit Science. Philadelphia: Taylor & Francis Inc, v. 21, n. 1, p. 205-217, 2021.
dc.identifier.doi10.1080/15538362.2020.1864698
dc.identifier.issn1553-8362
dc.identifier.urihttp://hdl.handle.net/11449/209072
dc.identifier.wosWOS:000604369300001
dc.language.isoeng
dc.publisherTaylor & Francis Inc
dc.relation.ispartofInternational Journal Of Fruit Science
dc.sourceWeb of Science
dc.subjectAgricultural management
dc.subjectagroclimatic zoning
dc.subjectgeostatistics
dc.subjectthematic maps
dc.titleFuzzy Mapping of Climate Favorability for the Cultivation of Conilon Coffee in the State of Bahia, Brazilen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Inc
unesp.author.orcid0000-0002-8498-4742[3]
unesp.author.orcid0000-0002-2790-3723[5]

Arquivos

Coleções