A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
dc.contributor.author | Souza, Renato William R. de | |
dc.contributor.author | Oliveira, Joao Vitor Chaves de | |
dc.contributor.author | Passos, Leandro A. [UNESP] | |
dc.contributor.author | Ding, Weiping | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Albuquerque, Victor Hugo C. de | |
dc.contributor.institution | Univ Fortaleza | |
dc.contributor.institution | Pontificia Univ Catolica Rio de Janeiro | |
dc.contributor.institution | Pontifical Catholic Univ Rio de Janeiro | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Nantong Univ | |
dc.date.accessioned | 2021-06-25T22:04:47Z | |
dc.date.available | 2021-06-25T22:04:47Z | |
dc.date.issued | 2020-12-01 | |
dc.description.abstract | In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios. | en |
dc.description.affiliation | Univ Fortaleza, Grad Program Appl Informat, BR-60811905 Fortaleza, Ceara, Brazil | |
dc.description.affiliation | Pontificia Univ Catolica Rio de Janeiro, BR-22451900 Rio De Janeiro, Brazil | |
dc.description.affiliation | Pontifical Catholic Univ Rio de Janeiro, BR-22451900 Rio De Janeiro, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, BR-01049010 Sao Paulo, Brazil | |
dc.description.affiliation | Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China | |
dc.description.affiliationUnesp | Sao Paulo State Univ, BR-01049010 Sao Paulo, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | National Natural Science Foundation of China | |
dc.description.sponsorship | Natural Science Foundation of Jiangsu Province | |
dc.description.sponsorship | Six Talent Peaks Project of Jiangsu Province | |
dc.description.sponsorship | Qing Lan Project of Jiangsu Province | |
dc.description.sponsorshipId | CNPq: 304315/2017-6 | |
dc.description.sponsorshipId | CNPq: 427968/2018-6 | |
dc.description.sponsorshipId | CNPq: 430274/2018-1 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2017/25908-6 | |
dc.description.sponsorshipId | FAPESP: 2018/21934-5 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | National Natural Science Foundation of China: 61976120 | |
dc.description.sponsorshipId | Natural Science Foundation of Jiangsu Province: BK20191445 | |
dc.description.sponsorshipId | Six Talent Peaks Project of Jiangsu Province: XYDXXJS-048 | |
dc.format.extent | 3076-3086 | |
dc.identifier | http://dx.doi.org/10.1109/TFUZZ.2019.2949771 | |
dc.identifier.citation | Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020. | |
dc.identifier.doi | 10.1109/TFUZZ.2019.2949771 | |
dc.identifier.issn | 1063-6706 | |
dc.identifier.uri | http://hdl.handle.net/11449/210572 | |
dc.identifier.wos | WOS:000595527100003 | |
dc.language.iso | eng | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Transactions On Fuzzy Systems | |
dc.source | Web of Science | |
dc.subject | Training | |
dc.subject | Prototypes | |
dc.subject | Forestry | |
dc.subject | Standards | |
dc.subject | Support vector machines | |
dc.subject | Fuzzy logic | |
dc.subject | Clustering algorithms | |
dc.subject | Classifiers | |
dc.subject | fuzzy | |
dc.subject | optimum-path forest (OPF) | |
dc.subject | pattern recognition | |
dc.title | A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee-inst Electrical Electronics Engineers Inc | |
unesp.author.orcid | 0000-0003-0517-8775[2] | |
unesp.author.orcid | 0000-0003-3886-4309[6] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |